Math 230A, Week #1 - Practice Problems

- 1. Let $A \subseteq \mathbb{R}$ be nonempty and bounded above. Show that if $\alpha = \sup A \notin A$, then $\forall \ \epsilon > 0$ the interval $(\alpha \epsilon, \alpha)$ contains infinitely many elements of A. What about the case $\alpha \in A$?
- **2.** Let $A, B \subseteq \mathbb{R}$ be bounded sets. Show that
- a) $\inf(A + B) = \inf A + \inf B$
- **b)** $\sup(A + B) = \sup A + \sup B$
- c) Is $sup(A \cdot B) = sup A \cdot sup B$?
- **d)** $\sup(-A) = -\inf A$
- e) $\sup(A B) = \sup A \inf B$
- **f)** $\sup(2A) = 2\sup A$
- **g)** inf $A \le \sup A$
- **g)** inf *A* and sup *A* are unique. In other words every set *A* has at most one glb or lub.
- **h)** $\inf(A \cup B) = \min \{\inf A, \inf B\}$
- i) $\sup(A \cup B) = \max\{\sup A, \sup B\}$

What about $A \cap B$?