Comprehensive Exam, Algebra, 2010

Part I Group Theory (Do 4 of the following 5 problems)

1. Let G be an abelian group of order 53 -3 = 375.
(a) Determine all possible isomorphism classes of G.

Proof:
By the Fundamental Theorem of Finite Abelian Groups, G is isomorphic to
a) Zs x Ls x Ls x 1.3, b) Z25 x L5 x 1.3, Ot C) Z125 X 3.

(b) For each isomorphism class, how many elements are there of order 3?

Proof:

To determine the number of elements in Z, of order d, where d is a divisor of n, we
apply the Euler function, ®(d).

Thus we have,

Group | No.of No. of No. of No. of No. of No. of No. of
elements elements elements elements elements elements elements
of order of order of order of order of order of order of order 125
1 3 5 15 25 75

Zs3 1 2 0 0 0 0 0

Zs 1 0 o(5)=4 0 0 0 0

Zas 1 0 o(5)=4 0 ®(20)=20 | 0 0

Z125 1 0 o(5)=4 0 ®(20)=20 | 0 ®(125) =100

For any element of a finite cross product o(ajy, az, ...) = lcm(e(a1), o(az), -..)-
Let a € Z3 such that o(a) = 3. Then we have the following table:

Number of Elements of Order 3
Zsx7Tsx7sx173 Zos x 15 x 73 2125 X 7.3
Elements Number Elements | Number | Elements | Number
(0,0,0,a) | lelele2=2 | (0,0,aqa) lele2=2 | (0, a) 1e2=2

(c) For each isomorphism class, how many elements are there of order 5?

Proof:
a) Leta, b, cE Zs, letd €735, and let g € Z125, where o(a) =o(b) =o(c) =o(d) =<(g) =5,
Number of Elements of Order 5
Zsx7Tsx7sx173 Zos x 15 x 73 Z125 X 1.3
Elements Number Elements | Number | Elements | Number
(a,b,c,0) | 4e4e4e1=64 | (d, b, 0) 4e4¢1=16 | (g, 0) 4e1=4
(a,b,0,0) | 4edelel=16|(d,0,0) 4elel=4
(a,0,c,0) | 4elede1=16|(0,b,0) ledel=4
(0,b,c,0) | 1e4e4e1=16
(a,0,0,0) | 4elelel=4
(0,b,0,0) | 1ledelel=4
(0,0,c,0) | lele4el1=4
Total: 124 24 4
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1. (d) If there are 48 elements of order 15, what is the isomorphism class of G?

Proof:

From parts (b) and (c), we can conclude:

Number of Elements of Order 15

Zs x 15 x s x 13

o5 x s x 7.3

L1125 X L3

Number of elements of

order 3 e number of
elements of order 5
=2¢140=280

Number of elements
of order 3 e number

of elements of order
5

Number of
elements of order 3
e number of
elements of order 5

=224=48 =2¢4=8

2. (a) In S7, find two elements o and t of order 6 that are not conjugate.

Proof:

Let 0=(123456) and lett = (12)(345).

Since a 6-cycles has order 6, and a product of a 2-cycle and a 3-cycle has order
lcm(2, 3) = 6, then 0® = (1) and 7 = (1).

(b) How many conjugates does each have?

Proof:
Since conjugates have the same cycle structure, then
Te6e5040302 T7e6 5043
o has p = 840 conjugates and t has 2 . =420 conjugates.

(c) Find the centralizer of o and the centralizer of t.
Proof:

840 =|o*[ =[S, : C; (0] = L) Thus |Cy, (*)] =6.

Cs )

Since (o) < C (") # S, and [(0)] = 6, then (o) = C4 (0).

- Cg (0) ={(1), 0, 0%, 03, 0%, 0%}

- {(1), (123456), (135)(246), (14)(25)(36), (153)(264), (165432)}

420=r| = [57 :C, (r)] - m Thus |Cy, (v)| =12.
S7

We know (t) < C; (1)< S, and Vy € C (1), (67)yt(67)y = .

© Cy (1) ={(1), %, T, 7,75, (67), (67)1, (67)%2, (67)%%, (67)t, (67)75}

= {(1), (12)(345), (354), (12), (345), (12)(354), (67), (67)(12)(345), (67)(354),
(67)(12), (67)(345), (67)(12)(354)).
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3. Let G be a group such that |G| = p" for some prime p.

(a) Prove that Z(G) # (e).

Proof:

Assume n = 1 (otherwise the theorem is false).

Suppose Z(G) ={e). Then Z(G) # G, hence 3 x € G such that x & Z(G).

This gives us that {x¢} # {x}, and consequently Cs(x) # G.

By the class equation, |G| = |Z(G)| + | E[G :C;(x,)]| where one x; is taken from each

conjugacy class of non-central elements of G. Since each C¢(x;) is a proper subgroup
of G, and |G| = [G: Cg(xi)] » |Cc(xi)|, then by Euclid's Lemma, p||[G: Cs(xi)]|-
Thus p||" [G:Cs(x))]], hence p||Z(G)|, contrary to |Z(G)| = 1.

o Z(G) # I(e).

(b) Prove that G has a normal subgroup of order p™-1.

Proof:

We will prove the result by induction on n.

Letn=1.

Then |G| = p. Since (e) < G and has order p'-! = 1, then the theorem holds.

Let n > 1 and assume the theorem holds for any group of order pk where k < n.
Let g € Z(G) such that g # e and has order p. By part (a) we know p||Z(G)|, and
hence, by Cauchy's Theorem, g exists. Then |{(g)| = p.

And(g) < GasVxEGVYyE(g),xyx1=y€E(g).

Define @: G — G/{g) by ¢(x) = x(g).

Since G/{g) has order p"-1, then, by induction 3 N' <\ G/{g) such that |N'| = p"-2.
By the correspondence theorem, 3 N <| G such that |N| = p"! as desired.

(c) Prove thatif N # (e) is a normal subgroup of G, then N N Z(G) # (e).

Proof:

We first note that V. a € N, a¢ C N. For if gag-! € a¢ for some g € G and a € N, then
gagt€N,asN<G=gag'ENVg&EG anda€EN. Also,Va&N,a°* "NN=JasV
gag € N, we have gag-! = b for some b € N, so then a = g-lbg € N.

Suppose ay, az, ..., ak € N and ak+1, ak+2, .., ar € G \N where the a;'s are representatives
of the distinct conjugacy classes of G. Since N </ G, then N is a union of conjugacy
classes, hence, N=a16U a6 U --- U axl. Ifai € Z(G) i€ {1, 2, .., k}, then |a¢| = 1.

s N =" ik:l‘af‘ =|INNZ(G)| + |E[G : C;(a,)]| for the noncentral a;.
As noted in part (a), [G:Cs(ai)] > 1, so then p|[G:C¢(ai)], hence p| E[G :Cs(a)]-

Thus, p||INNZ(G)|, and hence N N Z(G) # (e).
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4. Let G beagroup and H = {g?|g €G}.
(a) Prove thatifH < G, then H </G.

Proof:
Letg € G,and let h € H. Then h = k? for some k€ G.

Thus ghg1 = gk?g~1 = gkggkg= = (gkg1)? € H.
- H]G.

(b) Prove that if G is abelian, then H < G.

Proof:
Since e = €2, then e € H, hence H # &.

Leta, b€ H. Thena =g?and b = k? for some g, k € G.
And ab1=g?(k?)1 = g?k2 = ggk-1k-1 = (gk1)2 € H (as gk-! € G and ( is abelian).
L H<G.

(c) Prove thatif G is finite, and H < G, then [G/H| = 2"

Proof:
Since G is finite, then G/H is finite.

LetgH € G/H. Then g2 € H=> (gH)? = H = eg/n, hence o(gH) | 2.
Thus 2 | |G/H| by corollary to Lagrange's Theorem.
Since every nonidentity element of G/H has order 2, then |G/H| = 2" for some integer

n 2 0, otherwise 3 p, a prime, such that p | |G/H|, hence 3 g € G such that o(gH) = p by

Cauchy's Theorem.
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5. Let G be a group such that |G| = p2q where p and q are primes, p # q.
(a) Prove that G is not simple.

Proof:
Let Hp be a Sylow p-subgroup, and H, be a Sylow g-subgroup.

If p>gq,thenny | gand np =1 mod(p), so np = tp + 1 < p for some integer t = 0.

Thus, np = 1 which gives us that H, < G.

If p < g, then if ng = 1, we have Hy < G.

Suppose ng > 1. Then ng = tq + 1 for some integer ¢ > 0.

And nq | p?, so ng = p or p2.
Sincep<q<tq+1,thentq+1#p,hencetq+1=p?

This givesustq=p?-1=(p-1)(p + 1).

So then q|(p - 1) or q|(p + 1) by Euclid's Lemma.

Since p < g, then q|(p + 1).

Since q > p, then q 2 p + 1, thus forcingg=p + 1.

The only primes for which g =p + 1 are p =2 and q = 3, hence |G| = 12.
Thus |Hp| = |Hz| = 22 and |Hy| = |H3| = 3.

Since [G:Hz] = 3 and |G| = 12 /3!, then by the Index Factorial Theorem, G is not

simple.
.. In either case, G is not simple.

(b) Prove that if p = 7 and q = 13, then G is abelian.

Proof:

Let H7 be a Sylow 7-subgroup and H13 be a Sylow 13-subgroup.

Then |H7| = 49 = 72, hence H7 is an abelian group as its order is the square of a
prime. And |H13| = 13, a prime, which gives us that H13 is cyclic, hence abelian.

We will show that G = H7 x H13, a product of two abelian groups, hence G is abelian.
Since n7 | 13 and n7 =1 (mod 7), then n; = 1, hence H; < G.

Since ni3| 49 and n13 = 1(mod 13), then ny3 = 1, hence Hy; < G.

We know H7 ¢ H13 < G.

And since (|H7|, |H13|) = 1, then |H7| L] |H13| = |H7 . H13| =72e¢13 = |G|

Hence H7 e« H13 = G.

Also H7 N Hiz = {e} as nonidentity elements of H7 have order 7 and nonidentity
elements of Hi3 have order 13.

And so G is the internal direct product of H7 and H13 which gives us that G = H7 x H13

as desired.
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Part II Ring and Field Theory (Do 4 of the following 5 problems)

1. Let R be a commutative ring with unity and let I be an ideal of R.
(a) Prove that if I is a maximal ideal, then I is a prime ideal.

Proof:
Let I be a maximal ideal in R.
Then R/I is a field, hence R/I is an integral domain.

And consequently, [ is a prime ideal.

(b) Prove that R is a field if and only if the only ideals of R are {0} and R.
Proof:

Assume Ris a field. Let I be an ideal in R.

If I = {0}, then we are done. Assume [ # {0}.

Let a € I such thata # 0. Then a is a unit as R is a field.
Thusl=aa'€lasalER.

Therefore, VrER, r=1ere&l.

And soI=R. .. The only ideals of R are {0} are R.

Conversely, asssume the only ideals of R are {0} and R.

Let a € R such thata # 0. Then (a) # {0}.

Suppose a is not a unit. Then ab # 1 for any b € R.

Thus (a) € Rbut (a) # Ras 1 € R, contrary to our assumption.

.. ais aunit, hence R is a field.

(c) Suppose that R satisfies the property that, for each a €R, there exists a natural
number n > 1 such that a" = a. Prove that every prime ideal in R is a maximal ideal in R.

Proof:

Let I be a prime ideal in R. Let]be an ideal in R such that & J.
Then 3 b € Jsuch thatb & I.

Since b" = b for somen > 1,then b"-b=b(b"1-1)=0.

This gives us that b(b"1-1)Elas 0 E I

Since b & I, and I is a prime ideal, then b"-1 - 1 €, hence b1 -1 €].
By closure, we have b™ € ] for any positive integer m.

And sincen>1,thenn-1>0, hence b1 &].
Sothenl=-(b"1-1)+br1E].

And this gives us that J=R.

.. Iis maximal.
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2. Letp(x) = (x*-9)(x2 +4) €Q[x]. Letl=(p(x)).
(a) Determine, with proof, all ideals in Q [x] which contain L.

Proof:

Letsi(x) =1,
s2(x)=x+3,
s3(x)=x-3,

sa(x) =x2-9,
ss(x) = x2 + 4,
se(x) = (x + 3)(x2 + 4),
s7(x) = (x - 3)(x% +4),

ss(x) = p(x)

Note that {si(x)}i1(1, .., 8} is the set of all factors of p(x) in Q[x].
Claim:

Vi=1,2,..,8, (si(x))is an ideal in Q[x] which contains I.
Letwel

Then w = p(x)r(x) = si(x)t(x)r(x) for some t(x), r(x) € Q[x].

Since t(x)r(x) € Q[x], then w € (si(x)).

=1 C (si(x)).

Suppose 3/, an ideal that contains I such that J # (si(x)) foranyi=1, 2, .., 8.

Since Q[x] is a PID, then 3 g(x) € Q[x] such that ] = (g(x)).

Since I C J, then p(x) €J. Thus, p(x) = g(x)h(x) for some h(x) € Q[x] which means
g(x) is a factor of p(x) in Q[x], contrary to our assumption.

.. The only ideals in Q[x] which contain I are listed above (*).

(b) For which of the ideals, ], from part (a) is Q[x]/] a field? (Explain.)

Proof:

Claim: Q[x]/(x + 3), Q[x]/(x - 3), Q[x]/(x? + 4) are fields.

Since x + 3 and x - 3 are linear polynomials, x? + 4 is irreducible over Q by
Eisenstein's Criterion and Q[x] is a PID, then each of (x + 3), (x - 3), and (x? + 4) are
maximal ideals. Thus Q[x]/(x + 3), Q[x]/(x - 3), Q[x]/(x?+ 4) are fields.

(c) Determine all ideals in Q(i)[x]/I.

Proof:

In addition to the ideals from part (a), (x + 2i) and (x - 2i) are ideals in Q (i)[x] that
contain [ as they are linear factors of x? + 4.

So then ((x + 2i)(si(x))) and ((x - 2i)(si(x))) are ideals in Q (i) [x] that contain |
foralli=1,2,.., 4.

By the correspondence theorem, foralli =1, 2, ..,, 4, (si(x))/I,

((x + 20)(si(x))) /1, and ((x - 2i)(si(x)))/I are ideals in Q(i)[x]/I.
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3. Let p be a prime and let F be an extension of Zp such that [F:Z,] = n.
(a) Prove [F| = pn.

Proof:
Since [F:Zp] = n, then F is a vector space over Zp of dimension n, so there are n basis

vectors <v1, V2, ., vn> C F such that every element a € F can be written uniquely as a
linear combination u = a1vy + azvz + -+ + anv, where the a; € Zp. There are thus p

choices for each a;; because of uniqueness, there are p” linear combinations of the v;,

hence p” unique elements of F.

(b) Prove F is a normal extension of Z.

Proof:
By theorem, Z, < Fif and only if F is a splitting field for a separable polynomial over Zp.

Claim: Fis a splitting field for f (x) = x?" - x € Zp[x] and f (x) is separable over Z,.
By theorem every polynomial over a finite field is separable.

Fxis a [cyclic] group of order p"-1,s0 V cE F¥, cP"1 - c=0.

Now 0r" = 0, so every c € Fis aroot of f (x).

Since deg g (x) = p", f has at most p” roots.

Since all p” elements of F are roots of f (x), f (x) has exactly p” roots.

Hence a is aroot of f(x) < a € F. Thus f(x) splits over F.

Since every element of F is a root of f(x), F is the smallest field in which f (x) splits.

Hence F is a splitting field for the separable polynomial f (x) over Z,.

A F<7,
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3. (¢) Define o: F —F by ofa) = a? for each a €F. Prove that Gal(F/Z,) = (o)

Proof:
* Ifa€F all powers of a are in F, hence o maps F into F.

* |F|=p"and Fis an extension of Z,, hence char F = p.
ThenV a, b EF,
o(a+b)=(a+b)p=apl+br=0(a)+o(b) and
o(ab) = (ab)P = arbP = o(a)eo(b).
Hence o is a homomorphism F — F.
The kernel of o is an ideal of F. The only ideals of field F are (0) and F.
a*=0<a=0,sokero= (O) Thus, o is 1-1; and since F is finite, then o is onto.
Hence o is an automorphism of F, o € Aut(F ).
Since every element of Aut(F) fixes based field Z,, Gal(F/Zp) = Aut(F ).
Claim: o(o) =n.
Va€F, e =a. o(a) = @, 0"(a) = o(0™1(a)) = o(o(--(0(a)) ) = (((@?)+ P = a" = .
Thus 0" = Idr.
Suppose 3 k < n such that o = Idr.
Then V a €EF, ok(a) = a.
Thus V a EF, a¥* = a.
SoVa€EF ar-a=0.
Thus every element of F is a root of x*" - x = g(x).
Now g(x) has at most pk roots, but F has p" > p¥ elements, give too many roots.
Thus o(0) = n.
Now since Z, <l F by part (b), the fixed field of Gal(F/Z)) is Z,.
Then [F:FGa(F/Zp)] = [F:Zp] = |Gal(F/Zp)| = Aut(F ) = n.
Since (o) < Aut(F) and o(0) = |Aut(F)|, Aut(F) = (o).
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4. Letp(x) =x*-3 €Q[x] and let E denote the splitting field for p(x) over Q.
(a) Show that E = Q(4/3, i).

Proof:

Since p(x) = (x + 4/3)(x - 4/3)(x + i4/3)(x - i4/3), then E= Q(4/3, - 4/3,i4/3, -i4/3) is
the splitting field for p(x).

Since i = i4/3 /4/3 €E, then Q(4/3, 1) CE.

Since -1 € Q, then EC Q(é\/g,i).

- E=0Q(4/3,1).

(b) Describe all of the automorphisms of E over () and explain how you know that

they are all automorphisms wthout directly verifying that they satisfy the definition of
an automorphism.

Proof:

We have E is the splitting field for p(x).

p(x) is separable over Q. Thus Q <l E. This gives us that EGa(E/Q = (.

So then |Gal(E/Q)| = [E:ECIE/Q] = [E:Q].

Since x* - 3 is irreducible over Q by Eisenstein's Criterion, then [Q(%):@] = deg
p(x) = 4. Since x? + 1 is irreducible over Q(%/C_%) as its roots are complex and Q(%/g)
consists only of real numbers, then [E:Q(%/g)] = 2.

Thus [E:0] = [E:0(43)][Q(43):0] =8.

This gives us that there are exactly 8 automorphisms.

Let a be aroot of x* - 3. Since the roots of x* - 3 and x? + 1 lie in E, then for any
o0 € Aut(E), o(a) is also a root of x* - 3 and o(i) is also a root of x2 + 1. Thus

automorphisms of E permute the roots of x* - 3 and permute the roots of x? + 1.
We can list the automorphisms as follows:

ai az as ag
v=p | ld 43 | -43 | i43 | -id3 (1)
. S -AB | 43 | -idB | ik | (12)34)
el A | -idGE | -3 | 4B | (1324
o o [-iAB A3 | 43 | 43 | (1423)
IR R E R D
o |oa | =43 43 | V3 |-idB ] (12)
oo | o | A3 [-iAB | 43 | -43 | (13)24)
o | o |-iA3 | A3 | 4B | 43 | (14)(23)
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(c) Let Tbe the automorphism such that (i) =i and r(%/g) =i4/3 and let o be the
automorphism such that o(i) = -i and 0(%/5) =[A/3. Determine the permutation of the
roots of p(x) which corresponds to each of these automorphisms.

Proof:
By the table above we have that t corresponds to the permutation (1324) and o

corresponds to the permutation (13)(24).

(d) Prove Gal(E/()) = Dg (where Dg denotes the dihedral group with 8 elements).

Proof:
Since E is the splitting field for x* - 3 which has degree 4, then Gal(E/Q) < Sa.
Since |Gal(E/Q)|, then Gal(E/Q) is equal to

Zig, Zia x L2, L2 x L2 % 72, Dg, or the quaternions.

From the table in part (b), we have Gal(E/Q) = {(1), (1324), (1423), (12), (34),
(12)(34), (13)(24), (14)(23)} Thisis a group with 5 elements of order 2 and 2
elements of order 4. Since (1324)(12) = (14)(23) and (12)(1324) = (13)(24), then
the group is not abelian. The only group of order 8 that has these properties is Ds.

. Gal(E/Q) = De.

(e) Determine, with explanation, the fixed field of the automorphism o.

Proof:
Claim: Q( A3+ %/C_Bi) is the fixed field of o.

Note thato(%/g+%/f_3i) =4/3i+ 4\/§i(—i) = 4/3 + 4/31.
Since [Q(A/3 +4/31):Q] = 4 and Q(4/3+4/31) £ Q(4/3, i), then [Q(4/3 +4/31):Q] = 4.
And since [Dg:(0)] = 4, then by the Fundamental Theorem of Galois Theory, we have

that Q (4/3 +4/3 1) is the fixed field of .
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5. Let E be the set of all algebraic elements over F.
(a) Prove thatE is a field.

Proof:
0,1€FEas0,1€F.

Leta, b E E. Want to showa - b, ab €E.

F(a, b) is a field by definition.

Say f(x) =irr(a, F) and g(x) = irr(b, F) where deg f=n, deg g = m.
Then [F(a, b):F] = [F(a, b): F(a)][ F(a):F]<men.

Thus, F(a, b) is an algebraic extension of F.

a-b,ab € F(a,b),soa-b,ab are algebraic over F, thusa - b, ab € E.

al€ F(a, b), so alis algebraic over F, and so a-! € E and E is a field.

(b) Prove thatif F = Q, then [E:F] = ~.

Proof:

K=0(+2,32,42, .., 42..)CE.

Since each pth root of 2 is algebraic over  being a root of x? - 2 € Q[x].
Suppose [E:Q] =m > 0.

Then 3 p > m, p a prime.

Now irr(%,@) = xP - 2, irreducible over () by Eisenstein's Criterion.

But [E:Q] = [E:Q(X2)][Q(X2):Q] 2 p > m.



