2.3 Measures of the Location of the Data

Percentíle

≪ A measure of position, the *percentile*, *p*, is an integer $(1 \le p \le 99)$ such that the *p*th percentile is the position of a data value where

p% of the data values in the distribution are less than or equal to the value and 100 - p% of the data values in the distribution are greater than or equal to the value.

We denote the 1st percentile, P_1 , the 2nd percentile, P_2 , ..., the highest percentile, P_{99} .

To find the data value in the p^{th} percentile in an ordered list we use the formula

 $p = \frac{x + 0.5y}{n} \bullet 100$ x = the number of data values less than the data value for which you wish to find the percentile y = the number of data values equal to the data value for which you wish to find the percentile n = the total number of data values

We can reverse the formula to find the position of the data value at a given percentile. For this we use the formula

$$i = \frac{k(n+1)}{100}$$
 i is used to locate the position of the value in an ordered list
n is the number of data values in the set
k is the given percentile

- If *i* is a whole number, count to the data value in the *i*th position starting with the smallest data value.
- If i is not a whole number, average the data values just above and just below the ith position.

Example 1: Consider the weights of ten newborn babies born on a given day at St. Elizabeth Hospital:

(a) Let's determine the percentile of the baby weight 7.8 relative to the others in this list.

5.9	6.2	6.3	7.0	7.2	7.7	7.8	7.9	8.8	10.5
1	2	3	4	5	6	7	8	9	10

There are x = 6 values below 7.8, 7.8 occurs y = 1 time, and n = 10 total values. Thus, we have $P = \frac{x + 0.5y}{n} \cdot 100 = \frac{6 + 0.5 \cdot 1}{10} \cdot 100 = \frac{6 + 0.5}{10} \cdot 100 = 65$,

that is, 7.8 is at the 65th percentile of this list.

Notice that

(b) Suppose we want to find the value that lies in the 45th percentile.

With
$$n = 10$$
 and $k = 45$,
we have
 $i = \frac{k(n+1)}{100} = \frac{45(10+1)}{100} = 4.95$
5.9 6.2 6.3 7.0 7.2 7.7 7.8 7.9 8.8 10.5
1 2 3 7.0 7.2 6.7 8 9 10
Find the average of data values in the
4th and 5th positions $\frac{7.0+7.2}{2} = 7.1$

Thus, **7.1** is at the 45^{th} percentile in our list.

(c) Suppose our data is the number of siblings of each of 9 surveyed individuals and we want to find the response value that lies in the 60^{th} percentile.

Using n = 9 and k = 60, we have $i = \frac{k(n+1)}{100} = \frac{60(9+1)}{100} = 6$ 4 1 3 3 3 0 2 7 18 5 6 7 8 3 4 1 2 9 $\mathbf{\wedge}$ Since *i* is a whole number, we choose the data value in the 6^{th} position.

Thus, the data value, **3** siblings, is at the 60^{th} percentile in our list.

Quartíles

≪ When percentiles give too much detailed information for analysis purposes, we can measure the position of data elements by quartiles. A *quartile* is the value of the boundary at the 25th, 50th, or 75th percentiles of a frequency distribution, dividing it into four equal parts, denoted Q_1, Q_2, Q_3 , and the maximum data value. We also call Q_2 , the median of the whole data set, Q_1 , is the median of the set of data values less than the median, and Q_3 , is the median of the set of data values greater than the median The formula $i = \frac{k(n+1)}{100}$ can be used to find the median. When the median, Q_2 , is known, Q_1 and Q_3 can be found using the same formula on the smaller half-sets.

Example 2:

(a) Let's find Q_1 , Q_2 , and Q_3 in the list of weights of newborns.

First, we'll find the median, Q_2 , using k = 50 and n = 10,

$$Q_2 = P_{50}$$
: $i = \frac{k(n+1)}{100} = \frac{50 \cdot 11}{100} = 5.11$ $Q_2 = \frac{7.2 + 7.7}{2} = 7.45$

Then, we find the median of the lower half using k = 50 and n = 5,

$$Q_1: i = \frac{k(n+1)}{100} = \frac{50(5+1)}{100} = \frac{50 \cdot 6}{100} = 3$$
 $Q_1 = 6.3$

And finally, we find the median of the upper half using k = 50 and n = 5,

$$Q_3: i = \frac{k(n+1)}{100} = \frac{50(5+1)}{100} = \frac{50 \cdot 6}{100} = 3 \text{ (Use 8)} \qquad Q_3 = 7.9$$

The *interquartile range*, *IQR*, is the difference between the 3rd and 1st quartiles.

$$IQR = Q_3 - Q_1$$

(b) Find the interquartile range of the weights of the newborn babies.

5.9 6.2 6.3 7.0 7.2 7.7 7.8 7.9 8.8 10.5
1 2 3 4 5 6 7 8 9 10

$$Q_1$$
 $IQR = 7.9 - 6.3 = 1.6$

The interquartile range of this data set is **1.6**.

Outliers

An *outlier* is a data value that lies outside the overall pattern of a distribution.

An extremely large data value or extremely small data value can affect the measures of mean and standard deviation. For this reason, the mean and standard deviation are called *nonresistant* statistics. The median and interquartile range are less affected by outliers, so they are called *resistant* statistics.

If a data value is suspiciously large or small, we check to see if the value lies within

$$[Q_1 - 1.5(IQR), Q_3 + 1.5(IQR)]$$

If the data value lies outside this interval, it is considered an outlier.

Example 3:

Determine if the data value \$1.17 million is an outlier in this list of home values:

\$272,000	\$303,000	\$341,000	\$384,000
\$272,000	\$304,000	\$346,000	\$404,000
\$275,000	\$305,000	\$348,000	\$434,000
\$277,000	\$328,000	\$351,000	\$738,000
\$297,000	\$337,000	\$359,000	\$912,000
\$298,000	\$339,000	\$380,000	\$1,170,000

$$Q_1 = \frac{298,000 + 303,00}{2} = \frac{601,000}{2} = 300,500$$

$$Q_3 = \frac{380,000 + 384,00}{2} = \frac{764,000}{2} = 382,000$$

$$IQR = 382,000 - 300,500 = 81,500$$

$$[Q_1 - 1.5(IQR), Q_3 + 1.5(IQR)]$$

= [300,500 - 1.5(81,500), 382,000 + 1.5(81,500)]
= [300,500 - 122,250, 382,000 + 122,250]
= [178,250, 504,250]

^{1,170,000} falls far outside the interval shown at left and is, thus, an outlier.

Interpreting Percentiles from a Frequency Distribution

In an ungrouped frequency distribution, we can find specific percentiles within the set of data by glancing at the cumulative frequency column.

Example 4:

Let's collect some data from this class: How many dogs do you have?

Number of dogs	Frequency	Relative frequency	Cumulative relative frequency
0			
1			
2			
3			
4			
5 or more			

Using the cumulative frequency column, answer the following questions.

- 1. Which number of dogs is in the 30^{th} percentile?
- 2. Which number of dogs is in the 80^{th} percentile?
- 3. An owner of 2 dogs is in which percentile in this distribution?