Content:	
Proposition	If G is a finite Abelian group and $d \mid G $, then G contains a subgroup of
	order <i>d</i> .
Definition	$\langle X \rangle$ Smallest subgroup of X containing all elements of X.
Definition	External Direct Product
Definition	Internal Direct Product
Theorem	If G is an internal direct product of H and K, then $G \cong H \times K$.
Theorem	If $G \cong G_1 \times G_2$, \exists normal subgroups H_1 and H_2 of G such that G is the
	internal direct product of H_1 and H_2 .

Warm-up

Get *G* be a group. Let $H \triangleleft G$, $K \triangleleft G$ such that $H \cap K = \{e\}$. Prove $hk = kh \forall h \in H$, $\forall k \in K$.

Proof:

Since $H \triangleleft G$, $h(kh^{-1}k^{-1}) \in H$. Since $K \triangleleft G$, $(hkh^{-1})k^{-1} \in K$. $\therefore hkh^{-1}k^{-1} \in H \cap K = \{e\}$. $\therefore hkh^{-1}k^{-1} = \{e\}$. $\therefore hk = kh$.

Proposition If G is a finite Abelian group and d | |G|, then G contains a subgroup of order d.

Proof:

First, we'll prove that if p | |G| where p is prime, then G has a subgroup of order p. Let |G| = n. We will prove by induction on n. Base case, n = 1. $\sqrt{}$ Induction hypothesis: Let s < n, then assume any group of order s such that p | s has a subgroup of order p.

Let $a \in G$ where $\circ(a) = k > 1$. If $p \mid k$ then $\circ(a^{\frac{k}{p}}) = p$ (by the gcd theorem). Let $H = \langle a^{\frac{k}{p}} \rangle$. There's our subgroup. Suppose $p \mid k$, then let $H = \langle a \rangle$. So |H| = k. We know $H \triangleleft G$ since G is Abelian. So G/H is a group and |G/H| = n/k < n. We know $p \mid n$ and $p \nmid k$. Thus $p \mid n/k$. By our induction hypothesis, we have a subgroup of G/H of order p. So, by the Correspondence Theorem, $\exists H' \leq G$ such that |H'/H| = p. Since p is prime, then H'/H is cyclic. $\therefore \exists b \in G$ such that $\langle bH \rangle = H'/H$. Since |H'/H| = p, then $\circ(bH) = p$. Since $\pi: G \to G/H$ takes b to bH we know $\circ(\pi(b))|\circ(b)$. Since $p \mid \circ(b)$, then $\circ(b^{\frac{\circ(b)}{p}}) = p$. So $H'' = \langle b^{\frac{\circ(b)}{p}} \rangle$, hence $|H''| = |\langle b^{\frac{\circ(b)}{p}} \rangle| = p$. Read the rest of the proof in the book. So, from this, we know if p | |G| then $\exists a \in G$ such that $\circ(a) = p$. But, this is not true for any divisor d | |G|. Our counterexample is $\mathbb{Z}_2 \times \mathbb{Z}_3$. There is no element of order 6 even though $| \mathbb{Z}_2 \times \mathbb{Z}_3| = 6$.

Presentation of Groups Using Generators and Relations

Definition Let X be a set, then $\langle X \rangle$ is the smallest subgroup containing all elements of X.

 $\langle x, y \rangle$ is the smallest subgroup containing x and y. We know it must contain: 1, x, y, x^k , y^j , xy, xy^7 , x^6y^8 , xyx, ...

Throw in relations:

Example $\langle x, y | xy = yx \rangle$. In this case, any element can be expressed as $x^k y^i$.

Example $D_{2n} = \langle a, b | b^n = 1 = a^2, aba = b^{-1} \rangle$

$$ab = b^{-1}a^{-1}$$
$$= b^{n-1}a$$

So $a^k b^j a^m$ can be expressed as $a^{k-1} ab b^{j-1} a^m$. Any element can be written as $a^k b^j$ where $k \in \{0, 1\}$ and $j \in \{0, 1, ..., n-1\}$

In D_{2n} , elements are of the form: $a^k b^j$ which tells us how many elements. 2 choices n choices

-or a total of 2*n* choices

Direct Products

 $HK = \{hk \mid h \in H, k \in K\}.$

Example \mathbb{Z}_6	Example S_3
Find $H \le \mathbb{Z}_6$ and $K \le \mathbb{Z}_6$ such that $H + K = \mathbb{Z}_6$.	Find $H \le S_3$ and $K \le S_3$ such that $HK = S_3$.
$H = \{0, 3\} \le \mathbb{Z}_6$ and $K = \{0, 2, 4\} \le \mathbb{Z}_6$	$H = \langle (12) \rangle \le S_3$ and $K = \langle (123) \rangle \le S_3$
And $H + K = \mathbb{Z}_6$.	And $HK = S_3$.
$H + K \cong H \times K? \text{ Yes.}$ $H \triangleleft \mathbb{Z}_6, K \triangleleft \mathbb{Z}_6 \text{ and } H \cap K = \{e\}$	$HK \cong H \times K? \text{ No.}$ $H \cap K = \{e\}, \text{ but } \sim (H \triangleleft S_3, K \triangleleft S_3)$

- **Definition** $G_1 \times G_2 = \{(g_1, g_2) \mid g_1 \in G_1, g_2 \in G_2\}$ We call this the *external direct product*.
- **Definition** If G is a group with $H \triangleleft G$ and $K \triangleleft G$, HK = G, and $H \cap K = \{e\}$, then G is said to be the *internal direct product* of H and K.

From handout:

4 (a) Let
$$x = hk \in G$$
. $\phi: H \cap K \rightarrow \{(h', k') \in H \times K \mid h'k' = x\}.$

This is all ordered pairs whose product of coordinates is *hk*.

This gives motivation for $H \cap K = \{e\}$.

4 (c) Rewritten: $|HK| |H \cap K| = |H \times K| = |H| |K|$. *x* -how many ways we can write *x*

- **Theorem** If G is an internal direct product of H and K, then $G \cong H \times K$.
- **Theorem** If $G \cong G_1 \times G_2$, \exists normal subgroups H_1 and H_2 of G such that G is the internal direct product of H_1 and H_2 .