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Content: 
Theorem Cauchy’s Theorem, Let G be a finite group whose order is divisible by p, a 
  prime.  Then G has an element of order p. 
Definition p-group 
Theorem If G is a p-group, then Z(G) ≠ {e}. 
Definition Conjugate 
Theorem All groups of order p2 are Abelian.  
Theorem Let G be an Abelian group.  G is simple if and only if |G| = p, p a prime. 
Theorem There are no non-abelian p-groups that are simple. 
Theorem An is simple for n ≥ 5.   
Lemma All 3-cycles in A5 are conjugate. 

 
Exam 2 will be moved to November 9. 

 
Theorem Cauchy’s Theorem 
  Let G be a finite group whose order is divisible by p, a prime.  Then 
  G has an element of order p. 
 
  Proof: 
  We already proved the result for Abelian groups. 
  Let |G| = pm, p, a prime, m ∈ Z.  We will induct on m. 
  m =1√  (i.e. If |G| = p, then we already know G has an element of order p.) 
  We state our induction hypothesis as “Assume any group of order pk  
  where k < m has an element of order p, (p prime).” 
  Assume G is non-abelian.   
  Let x ∈ G such that x ∉ Z(G)   
  (We know we can do this as G is not Abelian). 
  Then ∃ g ∈ G such that gxg–1 ≠ x, hence |xG| = [G:CG(x)] ≥ 2.  
  So CG(x) is a proper subgroup of G. 
  If p| |CG(x)|, then by our induction hypothesis, CG(x) contains an element  
  of order p. 
  And since CG(x) ≤ G, then G has an element of order p. 
  So we may assume p 

€ 

/ |  |CG(xi)| for all non-central xi. 
  But, for all i, |G| = [G:CG(xi)] • |CG(xi)|. 
  Since p | |G| and p 

€ 

/ |  |CG(xi)|, then, by Euclid’s lemma, p | [G:CG(xi)] for all  
  non-central i. 
  ∴  p | 

€ 

[G :CG (xi)]i∑ .   

  And since |G| = |Z(G)| + 

€ 

[G :CG (xi)]i∑  and p | |G|, then p | |Z(G)|. 
  Since Z(G) is Abelian, then Z(G) has an element of order p.  Hence G has  
  an element of order p. 
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Example Prove all groups of order 42 are not simple. 
  Proof: 
  By Cauchy’s theorem, G has an element of order 7, call it a.  Let H = 〈a〉.   
  Then [G:H] = 6.  And 42 

€ 

/ |  6!.   
  So G is not simple by the Index Factorial theorem. 
Note:  This is HW #98 done, just generalize. 

 
Example If G is a group, |G| = 6, then G ≅ Z6 or G ≅ S3. 

  Proof (Alternate to proof given in text, mentioned in Lecture Notes  
  10/7/09):  By Cauchy’s theorem, G contains an element of order 2 and an  
  element of order 3. 
  Let a, b ∈G such that (a) = 2 and (b) = 3. 
  We can show e, a, b, b2, ab, ab2 are all distinct elements of G. 
  Consider ba. 
  ba = e  ⇒ b = a–1 = a ⇒⇐ 
  ba = a ⇒ b = e ⇒⇐ 
  ba = b  ⇒ a = e ⇒⇐ 
  ba = b2 ⇒ a = b ⇒⇐ 

So either      ba = ab    or         ba = ab2. 
 
 
 
If ba = ab, then it can be easily checked 
that   is Abelian. 
Hence (ab) = 6, by Prop 2.82 (If a, b ∈ G 
are commuting elements of orders m, n 
respectively, and (m, n) = 1, then (ab) = 
mn.) 
∴  |G| = |〈ab〉| = 6. 
∴  G ≅ Z6. 

If ba = ab2, then a–1ba = b2 = aba  
(since (a) = 2). 
D6 = 〈x, y | x2 = 1 = y3, xy x= y–1 = y2〉. 
Define φ: D6 → G by φ(x) = a, φ(y) = b. 
Checking well-defined comes down to 
checking that the relations are preserved. 
 
∴  G ≅ D6 = S3. 

 
Aside  Here is why D6 = S3.  Consider the triangle whose vertices are numbered. 
We know D6 = {r0, r1, r3, f1, f2, f3}. 
 

r0 = 

€ 

1 2 3
1 2 3
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  f1 = 

€ 

1 2 3
1 3 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

r1 = 

€ 

1 2 3
2 3 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  f2 = 

€ 

1 2 3
3 2 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

r2 = 

€ 

1 2 3
3 1 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  f3 = 

€ 

1 2 3
2 1 3
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

1 2 

3 
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Can’t be 1 as |O (x)| = [G:Gx] and 
each orbit has more than 1 element. 

Definition Let G be a finite group of order pk where p is prime, then G is called a  
p-group. 

 
Theorem If G is a p-group, then Z(G) ≠ {e}. 
  Proof: 
  By the class equation, |G| = |Z(G)| + 

€ 

[G :Gxi
]

i
∑  where one xi is chosen  

  from each orbit with  
  more than 1 element. 
 
  By Lagrange’s theorem, 

€ 

[G :Gxi
] | |G| for each i. 

  Since each 

€ 

[G :Gxi
] ≠ 1, then p | 

€ 

[G :Gxi
], so p |

€ 

[G :Gxi
]

i
∑ . 

  Since G is a p-group, then p | |G|, so p | |Z(G)| + 

€ 

[G :Gxi
]

i
∑ ,  

  hence p | |Z(G)|.  ∴ Z(G) ≠ {e}. 
 

Theorem All groups of order p2 are Abelian.  
  Proof: 
  Z(G) ≤ G, so |Z(G)| = 1, p, or p2. 
  By the previous theorem, |Z(G)| ≠ 1. 
  If |Z(G)| = p, then |G/Z(G)| = p2/p = p, hence  G/Z(G) is cyclic.   
  And by Exercise 2.69, G is Abelian.  But if |Z(G)| = p, then G ≠ Z(G).   
  ∴ G cannot be Abelian, a contradiction, hence |Z(G)| ≠ p. 
  If |Z(G)| = p2, then |G/Z(G)| = p2/p2 = 1, hence Z(G) = G.  ∴  G is Abelian. 

 
Theorem Let G be an Abelian group.  G is simple if and only if |G| = p, p a prime. 
  Proof (from lecture notes): 
  Any subgroup is normal.   
  The only groups with only trivial subgroups are the Zp’s. 
  Proof (from text): 
  If G is finite of prime order p, then G has no subgroups H other than {1}  
  and G, otherwise Lagrange’s theorem would show that |H| is a divisor of  
  p.  ∴  G is simple. 
  Conversely, assume G is simple.  Since G is Abelian, every subgroup is  
  normal, and so G has no subgroups other than {1} and G.  Choose x ∈ G  
  with x ≠ 1.  Since 〈x〉 is a subgroup, we have 〈x〉 = G.  If x has infinite  
  order, then all the powers of x are distinct, and so 〈x2〉 ≤ 〈x〉 is a forbidden  
  proper subgroup of 〈x〉, a contradiction.  ∴  Every x ∈ G has finite order.   
  If (x) = m < ∞ and if m is composite, say m = kn, then 〈xk〉 is a proper  
  nontrivial subgroup of 〈x〉, a contradiction.  ∴ G = 〈x〉 has prime order. 
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Theorem There are no non-abelian p-groups that are simple. 
  Proof: 
  Let G be a non-abelian p-group.  Then Z(G) ≠ G. 
  By previous theorem, Z(G) ≠ {e}. 
  Since the center of a group is always a normal subgroup of the group,  
  then Z(G) is a non-trivial normal subgroup of G. 

 
Theorem An is simple for n ≥ 5.   
  To prove this we need the next 2 lemmas. 
Question Let G act on itself by conjugation.  Let H ≤ G.  Then H can act on itself by 
  conjugation.  Let x, y ∈ H.  If y ∈ O (x) for G, then is y ∈ O (x) for H? 
  That is, if y = gxg–1 for some g ∈ G is y = hxh–1 for some h ∈ H? 
  Not necessarily.  See #89 (iii).  
  (There are two conjugacy classes of 5-cycles in A5, each of which has 12  
  elements, while there is only one conjugacy class of 5-cycles in S5.)  
  So, we don’t get the following lemma for free, we have to prove it. 

 
Lemma All 3-cycles in A5 are conjugate. 
  Proof: 
  Let α = (123) ∈ S5.  By Thm 2.9 (All permutations γ and σ in Sn have the  
  same cycle structure iff ∃ α ∈ Sn with σ = αγα–1.) we know all 3-cycles  
  are conjugate to (123) in S5. ∴  |

€ 

α S5 | = (5 • 4 • 3)/3 = 20.  

  And by Thm 2.98 (|O (x)| = [G:Gx]),  |

€ 

α S5 | = 

€ 

S5
CS5
(α)

 = 

€ 

120
CS5
(α)

.   

  ∴  |

€ 

CS5
(α) | = 6.   

  We can easily find these 6 elements.   
  It’s a subgroup, so it must contain (1).   
  Since ααα–1 = α, then α ∈ 

€ 

CS5
(α) .  So α–1 = (132) ∈ 

€ 

CS5
(α) .   

  Any cycle γ, disjoint to α will give us γαγ–1 = α, so (45) ∈ 

€ 

CS5
(α) .   

  Since 

€ 

CS5
(α)  is a group, then (123)(45) and (132)(45) are in 

€ 

CS5
(α) .   

  So 

€ 

CS5
(α)  = {(1), (123), (132), (45), (123)(45), (132)(45)} 

 
 
  

€ 

CA5
(α)  = A5 ∩ 

€ 

CS5
(α) , so 

€ 

CA5
(α)  = {(1), (123), (132)},  

  hence |

€ 

CA5
(α) | = 3. 

  Since 

€ 

α A5  = 

€ 

A5
CA5

(α)
, and |A5| = (1/2)5! = 60, then 

€ 

α A5  = 20. 

  Thus 

€ 

α S5  =

€ 

α A5 , which implies all 3-cycles are conjugate to (123) in A5. 
  Note:  This lemma can be generalized from A5 to An for n ≤ 5.  

 

odd even even even odd odd 
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Lemma Each element in An, for n ≥ 3 is either a 3-cycle or a product of 3-cycles. 
 
  Proof: 
  Let α ∈ An, n ≥ 3.  Then α = τ1τ2τ2k–1τ2k for some positive integer k. 
  We may assume that adjacent τ’s are distinct, otherwise their product is  
  (1).  As the transposition can be grouped in pairs, then we only need to  
  prove that a product of 2 transpositions is a 3-cycle.  So consider τ and τ’. 
  If τ = (i j) and τ’ = (j k), then ττ’ = ( i j k). 
  If τ = (i j) and τ’ = (k n), then ττ’ = (i j)(j k)(j k)(k n) = (i j k)(j k n). 
  ∴  α is either a 3-cycle or a product of 3-cycles. 

 
On Monday we will prove A5 is simple, and A6 is simple.  We will also discuss finite 
Abelian groups.  You can read about it in 5.1 if you want. 


