Content:

Theorem Cauchy's Theorem, Let G be a finite group whose order is divisible by p, a

prime. Then G has an element of order p.

Definition *p*-group

Theorem If G is a p-group, then $Z(G) \neq \{e\}$.

Definition Conjugate

Theorem All groups of order p^2 are Abelian.

Theorem Let G be an Abelian group. G is simple if and only if |G| = p, p a prime.

Theorem There are no non-abelian *p*-groups that are simple.

Theorem A_n is simple for $n \ge 5$.

Lemma All 3-cycles in A_5 are conjugate.

Exam 2 will be moved to November 9.

Theorem

Cauchy's Theorem

Let G be a finite group whose order is divisible by p, a prime. Then G has an element of order p.

Proof:

We already proved the result for Abelian groups.

Let |G| = pm, p, a prime, $m \in \mathbb{Z}$. We will induct on m.

 $m = 1\sqrt{\text{(i.e. If } |G| = p, then we already know } G \text{ has an element of order } p.)}$

We state our induction hypothesis as "Assume any group of order pk

where k < m has an element of order p, (p prime)."

Assume G is non-abelian.

Let $x \in G$ such that $x \notin Z(G)$

(We know we can do this as G is not Abelian).

Then $\exists g \in G$ such that $gxg^{-1} \neq x$, hence $|x^G| = [G:C_G(x)] \geq 2$.

So $C_G(x)$ is a proper subgroup of G.

If $p | |C_G(x)|$, then by our induction hypothesis, $C_G(x)$ contains an element of order p.

And since $C_G(x) \le G$, then G has an element of order p.

So we may assume $p \mid |C_G(x_i)|$ for all non-central x_i .

But, for all i, $|G| = [G:C_G(x_i)] \cdot |C_G(x_i)|$.

Since $p \mid |G|$ and $p \mid |C_G(x_i)|$, then, by Euclid's lemma, $p \mid [G:C_G(x_i)]$ for all non-central i.

$$\therefore p \mid \sum_{i} [G : C_G(x_i)].$$

And since $|G| = |Z(G)| + \sum_{i} [G : C_G(x_i)]$ and $p \mid |G|$, then $p \mid |Z(G)|$.

Since Z(G) is Abelian, then Z(G) has an element of order p. Hence G has an element of order p.

Example Prove all groups of order 42 are not simple.

Proof:

By Cauchy's theorem, G has an element of order 7, call it a. Let $H = \langle a \rangle$. Then [G:H] = 6. And 42 I 6!.

So *G* is not simple by the Index Factorial theorem.

Note: This is HW #98 done, just generalize.

Example If G is a group, |G| = 6, then $G \cong \mathbb{Z}_6$ or $G \cong S_3$.

Proof (Alternate to proof given in text, mentioned in Lecture Notes 10/7/09): By Cauchy's theorem, G contains an element of order 2 and an element of order 3.

Let $a, b \in G$ such that $\circ(a) = 2$ and $\circ(b) = 3$.

We can show e, a, b, b^2, ab, ab^2 are all distinct elements of G. Consider ba.

or

$$ba = e \Rightarrow b = a^{-1} = a \Rightarrow \Leftarrow$$

 $ba = a \Rightarrow b = e \Rightarrow \Leftarrow$
 $ba = b \Rightarrow a = e \Rightarrow \Leftarrow$
 $ba = b^2 \Rightarrow a = b \Rightarrow \Leftarrow$

So either

If ba = ab, then it can be easily checked that is Abelian.

Hence $\circ(ab) = 6$, by Prop 2.82 (If $a, b \in G$ are commuting elements of orders m, n respectively, and (m, n) = 1, then $\circ(ab) = mn$.)

$$\therefore |G| = |\langle ab \rangle| = 6.$$

$$\therefore G \cong \mathbb{Z}_6.$$

If
$$ba = ab^2$$
, then $a^{-1}ba = b^2 = aba$ (since $\circ(a) = 2$).

$$D_6 = \langle x, y \mid x^2 = 1 = y^3, xy \ x = y^{-1} = y^2 \rangle.$$

Define $\phi: D_6 \to G$ by $\phi(x) = a, \phi(y) = b$.
Checking well-defined comes down to checking that the relations are preserved.

 $ba = ab^2$.

$$\therefore G \cong D_6 = S_3.$$

Aside Here is why $D_6 = S_3$. Consider the triangle whose vertices are numbered.

We know $D_6 = \{r_0, r_1, r_3, f_1, f_2, f_3\}.$

$$r_{0} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad f_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$r_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad f_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$r_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad f_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

Definition

Let G be a finite group of order p^k where p is prime, then G is called a p-group.

Theorem

If G is a p-group, then $Z(G) \neq \{e\}$.

Proof

By the class equation, $|G| = |Z(G)| + \sum_{i} [G:G_{x_i}]$ where one x_i is chosen

from each orbit with more than 1 element.

Can't be 1 as $|\mathcal{O}(x)| = [G:G_x]$ and each orbit has more than 1 element.

By Lagrange's theorem, $[G:G_{x_i}] \sqcup G$ for each i.

Since each $[G:G_{x_i}] \neq 1$, then $p \mid [G:G_{x_i}]$, so $p \mid \sum [G:G_{x_i}]$.

Since G is a p-group, then $p \mid |G|$, so $p \mid |Z(G)| + \sum_{i=1}^{n} [G:G_{x_i}]$,

hence $p \mid |Z(G)|$. $\therefore Z(G) \neq \{e\}$.

Theorem

All groups of order p^2 are Abelian.

Proof:

 $Z(G) \le G$, so |Z(G)| = 1, p, or p^2 .

By the previous theorem, $|Z(G)| \neq 1$.

If |Z(G)| = p, then $|G/Z(G)| = p^2/p = p$, hence G/Z(G) is cyclic.

And by Exercise 2.69, G is Abelian. But if |Z(G)| = p, then $G \neq Z(G)$.

 \therefore *G* cannot be Abelian, a contradiction, hence $|Z(G)| \neq p$.

If $|Z(G)| = p^2$, then $|G/Z(G)| = p^2/p^2 = 1$, hence Z(G) = G. \therefore G is Abelian.

Theorem

Let G be an Abelian group. G is simple if and only if |G| = p, p a prime.

Proof (from lecture notes):

Any subgroup is normal.

The only groups with only trivial subgroups are the \mathbb{Z}_p 's.

Proof (from text):

If G is finite of prime order p, then G has no subgroups H other than $\{1\}$ and G, otherwise Lagrange's theorem would show that |H| is a divisor of p. \therefore G is simple.

Conversely, assume G is simple. Since G is Abelian, every subgroup is normal, and so G has no subgroups other than $\{1\}$ and G. Choose $x \in G$ with $x \ne 1$. Since $\langle x \rangle$ is a subgroup, we have $\langle x \rangle = G$. If x has infinite order, then all the powers of x are distinct, and so $\langle x^2 \rangle \le \langle x \rangle$ is a forbidden proper subgroup of $\langle x \rangle$, a contradiction. \therefore Every $x \in G$ has finite order. If $\circ(x) = m < \infty$ and if m is composite, say m = kn, then $\langle x^k \rangle$ is a proper nontrivial subgroup of $\langle x \rangle$, a contradiction. $\therefore G = \langle x \rangle$ has prime order.

Theorem

There are no non-abelian *p*-groups that are simple.

Proof:

Let G be a non-abelian p-group. Then $Z(G) \neq G$.

By previous theorem, $Z(G) \neq \{e\}$.

Since the center of a group is always a normal subgroup of the group, then Z(G) is a non-trivial normal subgroup of G.

Theorem

 A_n is simple for $n \ge 5$.

To prove this we need the next 2 lemmas.

Question

Let *G* act on itself by conjugation. Let $H \le G$. Then *H* can act on itself by conjugation. Let $x, y \in H$. If $y \in \mathcal{O}(x)$ for *G*, then is $y \in \mathcal{O}(x)$ for *H*? That is, if $y = gxg^{-1}$ for some $g \in G$ is $y = hxh^{-1}$ for some $h \in H$? Not necessarily. See #89 (iii).

(There are two conjugacy classes of 5-cycles in A_5 , each of which has 12 elements, while there is only one conjugacy class of 5-cycles in S_5 .) So, we don't get the following lemma for free, we have to prove it.

Lemma

All 3-cycles in A_5 are conjugate.

Proof:

Let $\alpha = (123) \in S_5$. By Thm 2.9 (All permutations γ and σ in S_n have the same cycle structure iff $\exists \alpha \in S_n$ with $\sigma = \alpha \gamma \alpha^{-1}$.) we know all 3-cycles are conjugate to (123) in S_5 . $\therefore |\alpha^{S_5}| = (5 \cdot 4 \cdot 3)/3 = 20$.

And by Thm 2.98 (
$$|\mathcal{O}(x)| = [G:G_x]$$
), $|\alpha^{S_5}| = \frac{|S_5|}{|C_{S_5}(\alpha)|} = \frac{120}{|C_{S_5}(\alpha)|}$.

$$\therefore |C_{S_5}(\alpha)| = 6.$$

We can easily find these 6 elements.

It's a subgroup, so it must contain (1).

Since $\alpha\alpha\alpha^{-1} = \alpha$, then $\alpha \in C_{S_{\varepsilon}}(\alpha)$. So $\alpha^{-1} = (132) \in C_{S_{\varepsilon}}(\alpha)$.

Any cycle γ , disjoint to α will give us $\gamma \alpha \gamma^{-1} = \alpha$, so (45) $\in C_{S_5}(\alpha)$.

Since $C_{S_5}(\alpha)$ is a group, then (123)(45) and (132)(45) are in $C_{S_5}(\alpha)$.

So
$$C_{s_s}(\alpha) = \{(1), (123), (132), (45), (123)(45), (132)(45)\}$$

even even even odd odd

$$C_{A_5}(\alpha) = A_5 \cap C_{S_5}(\alpha)$$
, so $C_{A_5}(\alpha) = \{(1), (123), (132)\}$, hence $|C_{A_5}(\alpha)| = 3$.

Since
$$\left|\alpha^{A_5}\right| = \frac{\left|A_5\right|}{\left|C_{A_5}(\alpha)\right|}$$
, and $|A_5| = (1/2)5! = 60$, then $\left|\alpha^{A_5}\right| = 20$.

Thus $|\alpha^{S_5}| = |\alpha^{A_5}|$, which implies all 3-cycles are conjugate to (123) in A_5 .

Note: This lemma can be generalized from A_5 to A_n for $n \le 5$.

Lemma

Each element in A_n , for $n \ge 3$ is either a 3-cycle or a product of 3-cycles.

Proof:

Let $\alpha \in A_n$, $n \ge 3$. Then $\alpha = \tau_1 \tau_2 \cdots \tau_{2k-1} \tau_{2k}$ for some positive integer k. We may assume that adjacent τ 's are distinct, otherwise their product is (1). As the transposition can be grouped in pairs, then we only need to prove that a product of 2 transpositions is a 3-cycle. So consider τ and τ '. If $\tau = (i \ j)$ and $\tau' = (j \ k)$, then $\tau \tau' = (i \ j) k$. If $\tau = (i \ j)$ and $\tau' = (k \ n)$, then $\tau \tau' = (i \ j)(j \ k)(j \ k)(k \ n) = (i \ j \ k)(j \ k \ n)$. \therefore α is either a 3-cycle or a product of 3-cycles.

On Monday we will prove A_5 is simple, and A_6 is simple. We will also discuss finite Abelian groups. You can read about it in 5.1 if you want.