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Content: 
Proposition G has a unique Sylow p-subgroup ⇔ P  G. 
Theorem If all Sylow p-subgroups are normal to G, then G is isomorphic to a direct  

product of its Sylow p-subproups. 
Proposition Let G be a nonabelian group of order |G| = pem, (p, m) = 1, p a prime. 
  If pe

€ 

/ |  (m – 1)!, then G is not simple. 
Theorem All groups of order 30 are not simple. 

 
Recall |G| = pkn 
 – All Sylow p-subgroups are conjugate. 
 – np = the number of Sylow p-subgroups = [G:NG(P)] 
 – np ≡ 1 (mod p) 
 – np | n. 

 
Proposition G has a unique Sylow p-subgroup ⇔ P  G. 
  Proof: 
  Let P be a Sylow p-subgroup of G. 
  P  G  ⇔ gPg–1 = P ∀ g ∈ G 
   ⇔ O (P) = {P} where G acts by conjugation on its subgroups 

  ⇔  |O (P)| = 1 
  ⇔  np = 1 
  ⇔  P is unique. 

 
So if we find np =  1, then the group is not simple.  It has a normal subgroup. 

 
Example Prove any group, G, of order 40 is not simple. 
  Proof: 
  40 = 22 • 5 
  So n5 ≡ 1 (mod 5) and n5 | 8. 
 
 
  ∴  n5 = 1.  So P5  G, Hence G is not simple. 

 
Theorem If all Sylow p-subgroups are normal to G, then G is isomorphic to a direct  

product of its Sylow p-subproups. 
  Proof: 
  See proof of Theorem 6 in Finite Abelian Groups handout (Let G be a  
  finite Abelian group such that |G| =     

€ 

p1
k1 pl

kl  where each of the pi are  
  distinct primes.   
  Then G ≅ G(p1) ×  × G(pi).).  The proof of Theorem 6 shows that G is  
  the internal direct product of it Sylow pi subgroups and therefore by  
  Theorem 3, G ≅ G(p1) ×  × G(pi).  Since we don’t have G is Abelian in  
  this case, we need the Sylow p-subgroups to be  normal.  Then the proof is 
  the same as for Theorem 6. 

n5 = 1, 6, 11, … n5 = 1, 2, 4, 8 
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Example Classify all groups of order 35. 
  Proof: 
  Let |G| = 35.  35 = 5 • 7.   
  So n5 | 7 and n5 ≡ 1 (mod 5).  Also n7 | 5 and n7 ≡ 1 (mod 7) 
 
 
 
  ∴  P5  G and P7  G.   
  By the previous theorem, G ≅ P5 × P7 ≅ Z5 × Z  7 ≅ Z  35. 

 
 

Example Classify all groups of order 10.  
  Proof: 
  Let |G| = 10.  10 = 2 • 5 
  So n2 | 5 and n5 ≡ 1 (mod 2).  Also n5 | 2 and n5 ≡ 1 (mod 5) 
 
 
  So n2 = 1 or 5 and n5 = 1. 
  If n2 = 1, then P2  G.  Since n5 = 1, then P5  G.   
  So G ≅ P2 × P5 ≅ Z2 × Z  5 ≅ Z  10. 
  If n2 = 5, then since n5 = 1, we have |P5| = 5,  
  hence for some a ∈ G, P5 = 〈a〉. 
  And since we have 5 subgroups of order 2,  
  then by Cauchy’s theorem, ∃ b ∈ G such that (b) = 2.   
  Since P5  G, then bab–1 ∈ P5.  So bab–1 = ak for some k ∈ {0, 1, 2, 3, 4}. 
  Since (b) = 2, then b = b–1, hence bab–1 = bab =  ak.   
  So a = bakb–1 = (bab–1)(bab–1)  (bab–1) = (bab–1)k = (bab)k = (ak)k = 

€ 

ak
2

. 
 
 
  Thus, 

€ 

ak
2−1 = e.  Since (a) = 5, then 5 | k2 – 1.   

  Since k ∈ {0, 1, 2, 3, 4}, we get k = 1 or 4.   
  If k = 1, then a = bab, hence ab = ba.   
  It can be easily checked that a2b = ba2, a3b = ba3, and a4b = ba4.   
  ∴  ∀ g ∈ G, gbg–1 ∈ P2.   
  ∴ P2  G.  Hence we get G ≅ Z  10. 
  If k = 4, then bab = a4 = a–1 and a5 = e = b2.   
  And this is the presentation definition of D10. 
  So there is a subgroup of G that is isomorphic to D10.   
  And since |D10| = |G|, then G ≅ D10. 
 
  Thus, if |G| = 10, then G ≅ Z  10 or G ≅ D10. 

 

n5 = 1, 6, 11, … n7 = 1, 8, 15, … n5 = 1, 7 n7 = 1, 5 

n2 = 1, 3, 5, … n5 = 1, 6, 11, … n2 = 1, 5 n5 = 1, 2 

k factors 
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Recall From homework #98, If |G| = pm where p is prime and p > m, then G is 
not simple. 

 
Proposition Let G be a nonabelian group of order |G| = pem, (p, m) = 1, p a prime. 
  If pe | (m – 1)!, then G is not simple. 
  Proof: 
  Let P be a Sylow p-subgroup of G.  Assume pe 

€ 

/ |  (m – 1)!.  So [G:P] = m. 
  Since pe 

€ 

/ |  (m – 1)! then |G| = pem 

€ 

/ |  m(m – 1)! = m!   
  ∴  By the Index Factorial theorem, G is not simple. 

 
This proposition shows that group of order 12, 18, 24, 36, 45, 48, 50, 54 are not simple. 
 
Example Prove all groups of order 54 are not simple. 
  Proof: 
  Let |G| = 54.  54 = 2 • 33.  33 | (2 – 1)! = 1.  ∴  G is not simple. 

 
The only groups left of order less than 60 are 30 and 56. 
The proof is similar for both.  Let’s prove for 30. 
 
Theorem All groups of order 30 are not simple. 
  Proof: 
  Let |G| = 30.  30 = 2 • 3 • 5. 
n2 | 15 and n2 ≡ 1 (mod 2); n3 | 10 and n3 ≡ 1 (mod 3); n5 | 6 and n5 ≡ 1 (mod 5). 
 
 
  ∴  n2 = 1, 3, 5, or 15.  n3 = 1 or 10.  n5 = 1 or 6. 

  Suppose n2 ≠ 1, n3 ≠ 1, and n5 ≠ 1. 

  Then n5 = 6, which means G has 6 subgroups of order 5.   

  This gives us 24 distinct non-identity elements of order 5. 

  Also n3 = 10, which means G has 10 subgroups of order 2, each of which  

  has a distinct element of order 2.   

  Thus, we have run out of elements as |G| = 30. 

  ∴  At least one of n2, n3, or n5 must be 1.  Hence G is not simple. 

 
 

n2 = 1, 3, 5, 15 n2 = 1, 3, 5, … n3 = 1, 2, 5, 10 n3 = 1, 4, 7, 11 n5 = 1, 2, 3, 6 n5 = 1, 6, 11, 16, … 


