and the second se	
Content:	
Proposition	G has a unique Sylow p-subgroup $\Leftrightarrow P \triangleleft G$.
Theorem	If all Sylow p -subgroups are normal to G , then G is isomorphic to a direct product of its Sylow p -subproups.
Proposition	Let G be a nonabelian group of order $ G = p^e m$, $(p, m) = 1$, p a prime. If $p^e (m-1)!$, then G is not simple.
Theorem	All groups of order 30 are not simple.
Recall $ G = p$ $- All = n_p = -n_p = -n_$	$p^k n$ Sylow <i>p</i> -subgroups are conjugate. the number of Sylow <i>p</i> -subgroups = [<i>G</i> : <i>N_G</i> (<i>P</i>)] 1 (mod <i>p</i>)

$$-n_p^P \mid n.$$

Proposition	G has a unique Sylow p-subgroup $\Leftrightarrow P \triangleleft G$.
	Proof:
	Let P be a Sylow p-subgroup of G.
	$P \triangleleft G \iff gPg^{-1} = P \forall g \in G$
	$\Leftrightarrow \mathcal{O}(P) = \{P\}$ where G acts by conjugation on its subgroups
	$\Leftrightarrow \mathcal{O}(P) = 1$
	$\Leftrightarrow n_p = 1$
	$\Leftrightarrow P$ is unique.

So if we find $n_p = 1$, then the group is not simple. It has a normal subgroup.

Example	Prove any group, G, of order 40 is not simple. Proof: $40 = 2^2 \cdot 5$ So $n_5 \equiv 1 \pmod{5}$ and $n_5 \mid 8$. $n_5 = 1, 6, 11, \dots$ $n_5 = 1, 2, 4, 8$ $\therefore n_5 = 1$. So $P_5 \triangleleft G$, Hence G is not simple.
Theorem	If all Sylow <i>p</i> -subgroups are normal to <i>G</i> , then <i>G</i> is isomorphic to a direct product of its Sylow <i>p</i> -subproups. Proof : See proof of Theorem 6 in Finite Abelian Groups handout (Let <i>G</i> be a finite Abelian group such that $ G = p_i^{k_1} \cdots p_i^{k_i}$ where each of the <i>p</i> , are
	distinct primes. Then $G \cong G(p_1) \times \cdots \times G(p_i)$.). The proof of Theorem 6 shows that G is the internal direct product of it Sylow p_i subgroups and therefore by Theorem 3, $G \cong G(p_1) \times \cdots \times G(p_i)$. Since we don't have G is Abelian in this case, we need the Sylow p-subgroups to be normal. Then the proof is the same as for Theorem 6.

Example Classify all groups of order 35. **Proof**: Let |G| = 35. $35 = 5 \cdot 7$. So $n_5 \mid 7$ and $n_5 \equiv 1 \pmod{5}$. Also $n_7 \mid 5$ and $n_7 \equiv 1 \pmod{7}$ $n_5 \equiv 1, 7$ $n_5 \equiv 1, 6, 11, \dots$ $n_7 \equiv 1, 5$ $n_7 \equiv 1, 8, 15, \dots$ $n_5 = 1, 7$ \therefore $P_5 \triangleleft G$ and $P_7 \triangleleft G$. By the previous theorem, $G \cong P_5 \times P_7 \cong \mathbb{Z}_5 \times \mathbb{Z}_7 \cong \mathbb{Z}_{35}$. Example Classify all groups of order 10. **Proof**: Let |G| = 10. $10 = 2 \cdot 5$ So $n_2 \mid 5$ and $n_5 \equiv 1 \pmod{2}$. Also $n_5 \mid 2$ and $n_5 \equiv 1 \pmod{5}$ $n_2 \equiv 1, 5$ $n_2 \equiv 1, 3, 5, ...$ $n_5 \equiv 1, 2$ $n_5 \equiv 1, 6, 11, ...$ So $n_2 = 1$ or 5 and $n_5 = 1$. If $n_2 = 1$, then $P_2 \triangleleft G$. Since $n_5 = 1$, then $P_5 \triangleleft G$. So $G \cong P_2 \times P_5 \cong \mathbb{Z}_2 \times \mathbb{Z}_5 \cong \mathbb{Z}_{10}$. If $n_2 = 5$, then since $n_5 = 1$, we have $|P_5| = 5$, hence for some $a \in G$, $P_5 = \langle a \rangle$. And since we have 5 subgroups of order 2, then by Cauchy's theorem, $\exists b \in G$ such that $\circ(b) = 2$. Since $P_5 \triangleleft G$, then $bab^{-1} \in P_5$. So $bab^{-1} = a^k$ for some $k \in \{0, 1, 2, 3, 4\}$. Since $\circ(b) = 2$, then $b = b^{-1}$, hence $bab^{-1} = bab = a^k$. So $a = ba^{k}b^{-1} = \underbrace{(bab^{-1})(bab^{-1})\cdots(bab^{-1})}_{k \text{ factors}} = (bab^{-1})^{k} = (bab)^{k} = (a^{k})^{k} = a^{k^{2}}.$ Thus, $a^{k^2-1} = e$. Since $\circ(a) = 5$, then $5 \mid k^2 - 1$. Since $k \in \{0, 1, 2, 3, 4\}$, we get k = 1 or 4. If k = 1, then a = bab, hence ab = ba. It can be easily checked that $a^2b = ba^2$, $a^3b = ba^3$, and $a^4b = ba^4$. $\therefore \forall g \in G, gbg^{-1} \in P_2.$ $\therefore P_2 \triangleleft G$. Hence we get $G \cong \mathbb{Z}_{10}$. If k = 4, then $bab = a^4 = a^{-1}$ and $a^5 = e = b^2$. And this is the presentation definition of D_{10} . So there is a subgroup of G that is isomorphic to D_{10} . And since $|D_{10}| = |G|$, then $G \cong D_{10}$. Thus, if |G| = 10, then $G \cong \mathbb{Z}_{10}$ or $G \cong D_{10}$.

Recall	From homework #98, If $ G = pm$ where p is prime and $p > m$, then G is not simple.
Proposition	Let G be a nonabelian group of order $ G = p^e m$, $(p, m) = 1$, p a prime. If $p^e \ell(m-1)!$, then G is not simple. Proof: Let P be a Sylow p-subgroup of G. Assume $p^e \ell(m-1)!$. So $[G:P] = m$. Since $p^e \ell(m-1)!$ then $ G = p^e m \ell(m-1)! = m!$ \therefore By the Index Factorial theorem, G is not simple.

This proposition shows that group of order 12, 18, 24, 36, 45, 48, 50, 54 are not simple.

Example	Prove all groups of order 54 are not simple.
	Proof:
	Let $ G = 54$. $54 = 2 \cdot 3^3$. $3^3 (2 - 1)! = 1$. \therefore G is not simple.

The only groups left of order less than 60 are 30 and 56. The proof is similar for both. Let's prove for 30.

Theorem	All groups of order 30 are not simple.
	Proof:
	Let $ G = 30$. $30 = 2 \cdot 3 \cdot 5$.
$n_2 \mid 15$ and n_2	$n_2 \equiv 1 \pmod{2}$; $n_3 \mid 10$ and $n_3 \equiv 1 \pmod{3}$; $n_5 \mid 6$ and $n_5 \equiv 1 \pmod{5}$.
$n_2 = 1, 3, 5, 15$	$n_2 = 1, 3, 5, \dots$ $n_3 = 1, 2, 5, 10$ $n_3 = 1, 4, 7, 11$ $n_5 = 1, 2, 5, 6$ $n_5 = 1, 6, 11, 16, \dots$
	\therefore $n_2 = 1, 3, 5, \text{ or } 15.$ $n_3 = 1 \text{ or } 10.$ $n_5 = 1 \text{ or } 6.$
	Suppose $n_2 \neq 1$, $n_3 \neq 1$, and $n_5 \neq 1$.
	Then $n_5 = 6$, which means G has 6 subgroups of order 5.
	This gives us 24 distinct non-identity elements of order 5.
	Also $n_3 = 10$, which means G has 10 subgroups of order 2, each of which
	has a distinct element of order 2.
	Thus, we have run out of elements as $ G = 30$.
	\therefore At least one of n_2, n_3 , or n_5 must be 1. Hence G is not simple.