Content:

Proposition Frac (R) contains an isomorphic copy of R

Definition F(x)

Proposition Let k be a field containing an integral domain R. Then there exists an

isomorphic copy of Frac (R) in k. (i.e. Frac (R) is the smallest field

containing R.)

Recall R Integral Domain

F = Frac(R)

 $[a, b] = 0_F \Leftrightarrow b \neq 0, a = 0.$

 $[a,a]=1_F$

 $[a,b]^{-1} = [b,a] \text{ if } a \neq 0.$

F is a field.

Example $\operatorname{Frac}(\mathbb{Z}) \cong \mathbb{Q} . \mathbb{Q}[a, b] \mapsto a/b$

Proposition Frac (R) contains an isomorphic copy of R.

Proof: --if we didn't have unity, Define $\varphi: R \to \operatorname{Frac}(R)$ by $\varphi(r) = [r, 1]$. we would choose [rb, b].

Define $\varphi: R \to \operatorname{Frac}(R)$ by $\varphi(r) = [r, 1]$. Define $R' = \{[a, 1]: a \in R\}$

It's easy to see $\varphi(a+b) = \varphi(a) + \varphi(b)$ and $\varphi(ab) = \varphi(a)\varphi(b)$.

Check this on your own.

 $\varphi(a+b) = [a+b, 1] = [a, 1] + [b, 1] = \varphi(a) + \varphi(b)$ and

 $\varphi(ab) = [ab, 1] = [a, 1][b, 1] = \varphi(a)\varphi(b).$

Let $a \in \ker \varphi$. Then $\varphi(a) = 0_R$. So $[a, 1] = 0_R$. Thus a = 0. So φ is 1-1.

In Frac (*R*) elements look like $[a, b] = a/b = ab^{-1}$ (be careful about ab^{-1})

Example Let F be a field. Then $\operatorname{Frac}(F[x]) = \{[f(x), g(x)] | f, g \in F[x], g \neq 0\}$ $= \{f(x)/g(x) | f, g \in F[x], g \neq 0\}$

= F(x) = Field of Rational Functions

- Pield of Kational Puliction

In homework exercises will prove $\operatorname{Frac}(R[x]) \cong F(x)$.

Example Suppose k is a field. What is Frac (k)? (Hopefully a field)

Frac
$$(k) = \{[a, b] \mid a, b \in k, b \neq 0\}$$

= $\{[ab^{-1}, 1] \mid a, b \in k, b \neq 0\}$

 $[a, b] = [ab^{-1}, 1]$ since $a \cdot 1 = b(ab^{-1})$

Define $\varphi: k \to \operatorname{Frac}(k)$ by $\varphi(a) = [a, 1]$.

From previous proposition, we know $\boldsymbol{\phi}$ is an injective homomorphism.

Let $[a, b] \in Frac(k)$, then $\varphi(ab^{-1}) = [ab^{-1}, 1] = [a, b]$.

So $\boldsymbol{\phi}$ is onto and hence an isomorphism.

Note $\operatorname{Frac}(\operatorname{Frac}(R)) \cong \operatorname{Frac}(R)$.

Proposition Let k be a field containing an integral domain R. Then there exists an isomorphic copy of Frac (R) in k. (i.e. Frac (R) is the smallest field containing R.)

Proof:

Define Frac
$$(R) \rightarrow k$$
 by $\varphi([a, b]) = ab^{-1}$.

$$\varphi([a,b] + [c,d]) = \varphi[ad + bc,bd] = (ad + bc)(bd)^{-1} = ad(bd)^{-1} + bc(bd)^{-1} = ab^{-1} + cd^{-1} = \varphi([a,b]) + \varphi([c,d]).$$
 And

$$\varphi([a,b][c,d]) = \varphi[ac,bd] = (ac)(bd)^{-1} = ab^{-1} \bullet cd^{-1} = \varphi([a,b])\varphi([c,d]).$$

Check well-defined and 1-1:

Suppose
$$[a, b] = [c, d]$$
 ($[a, b]$, $[c, d] \in \operatorname{Frac}(R)$; $a, b, c, d \in R \subseteq k$).

Then
$$ad = bc$$

And
$$ab^{-1} = cd^{-1}$$
 (since $a, b, c, d \in k$).

So
$$\varphi[a,b] = \varphi([c,d]).$$

The reverse of this gives us 1-1.

Or, we could have checked 1-1 by looking at the kernel.

$$\therefore$$
 Frac $(R) \cong \varphi(\operatorname{Frac}(R)) \subseteq k$.

Note Since the kernel of a field is $\{0\}$ or all of the field, then:

If checking φ : Frac $(R) \rightarrow R$ for 1-1, it's easier to look at the kernel.

If checking φ : $R \to \operatorname{Frac}(R)$ for well-defined it's easier to look at the kernel. Or, it might be the other way around.

Example

Let
$$R = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\} = \mathbb{Z}[\sqrt{2}].$$

Frac
$$(R) \cong (?)$$
 We guess $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$

Options

- (1) Define φ : Frac $(R) \to \mathbb{Q}(\sqrt{2})$ and show it's an isomorphism.
- (2) Show $\mathbb{Q}(\sqrt{2})$ is the smallest field containing R.

We'll choose (2).

We'll show a) $\mathbb{Q}(\sqrt{2})$ is a field that contains R.

b) If
$$R \subseteq k$$
, k is a field, then $\mathbb{Q}(\sqrt{2}) \subseteq k$.

(a) Since $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{R}$, we need only check closure of +, \bullet , and that we have inverses of nonzero elements.

Closure – you check.

$$a+b\sqrt{2}+c+d\sqrt{2}=a+c+(b+d)\sqrt{2}\in\mathbb{Q}(\sqrt{2})$$

$$(a + b\sqrt{2})(c + d\sqrt{2}) = ac + 2bd + (cb + ad)\sqrt{2} \in \mathbb{Q}(\sqrt{2})$$

$$(a + b\sqrt{2})^{-1} = ? (a, b \in \mathbb{Q}, \text{ not both } 0).$$

Since
$$(a + b\sqrt{2}) \left(\frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} \sqrt{2} \right) = 1$$
, then

$$(a+b\sqrt{2})^{-1} = \left(\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}\sqrt{2}\right).$$

So we have (a)

(b) Let k be a field such that $R \subseteq k$. We'll show $\mathbb{Q}(\sqrt{2}) \subseteq k$. Let $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$.

Then a = p/q and b = m/n for some $p, q, m, n \in \mathbb{Z}, q \neq 0$ and $n \neq 0$. We know $\mathbb{Z} \subseteq R \subseteq k$, and $\mathbb{Q} \cong \operatorname{Frac}(\mathbb{Z}) \subseteq k$ (since $\operatorname{Frac}(\mathbb{Z})$ is the smallest field containing \mathbb{Z} .) Since $p/q, m/n \in \operatorname{Frac}(\mathbb{Z})$, and $\sqrt{2} \in k$. then $a + b\sqrt{2} = p/q + (m/n)\sqrt{2} \in k$.

So $\mathbb{Q}(\sqrt{2}) \subseteq k$. Hence $\mathbb{Q}(\sqrt{2})$ is the smallest field containing R.