Debra Griffin Section 3.4+ 3.33, Corollary 3.34, Handout 3-8

1. Text #3.33

3.33. Let k be a field, and let f(x), $g(x) \in k[x]$ be relatively prime. If $h(x) \in k[x]$, prove that f(x)/h(x) and $g(x)/h(x) \Rightarrow f(x)g(x)/h(x)$.

Hint: See Exercise 1.19 on p. 13.

Proof:

Assume k is a field, f(x), $g(x) \in k[x]$ are relatively prime, and $f(x) \mid h(x)$ and $g(x) \mid h(x)$ for some $h(x) \in k[x]$. Then the gcd (f(x), g(x)) = 1. Let a denote $a(x) \forall a(x) \in k[x]$. By Thm 3.31 (If $f, g \in k[x]$, k a field, then gcd (f, g) = sf + tg for some $s, t \in k[x]$.) Then gcd $(f, g) = 1 \Rightarrow 1 = sf + tg$ for some $s, t \in k[x]$, and $f \mid h$ and $g \mid h \Rightarrow h = fu = gv$ for some $u, v \in k[x]$. So h = hsf + htg = gvsf + futg = fg(vs + ut). $\therefore f(x)g(x) \mid h(x)$.

2. Corollary 3.34, p. 136

Let k be a field and let $f(x) \in k[x]$ be a quadratic or cubic polynomial. Then f(x) is irreducible in k[x] if and only if f(x) does not have a root in k.

Proof:

Note that by Proposition 3.24 (If $f(x) \in k[x]$, then a is a root of f(x) in k if and only if x - a divides f(x) in k[x]).

Assume $f(x) \in k[x]$ and deg $f(x) = n \in \{2, 3\}$.

We will show the forward implication by contraposition.

Suppose f(x) does have a root, a, in k.

Then (x - a)|f(x), or equivalently, f(x) = g(x)(x - a) for some $g(x) \in k[x]$.

Since k[x] is an integral domain, then $\deg f(x) = \deg g(x) + \deg ((x-a))$.

Thus $\deg g(x) = 1$ or 2 for $\deg f(x) = 2$ or 3 respectively, since degrees are nonnegative. $\therefore f(x)$ is reducible.

Or, equivalently, f(x) is irreducible in $k[x] \Rightarrow f(x)$ does not have a root in k.

Conversely, suppose f(x) does not have a root in k, then (x - a) f(x) \forall $a \in k$. If f(x) = g(x)h(x) for some g(x), $h(x) \in k[x]$, then neither g nor h has degree 1 (otherwise (ab + c)|f(x), hence -c/a is a root of f(x) in k.)

And since $\deg f(x) = \deg g(x) + \deg h(x)$, then at least one of the factors has degree 0, hence is a unit (that is $3 = \deg f(x) = \deg g(x) + \deg h(x) = 3 + 0$ or $2 = \deg f(x) = \deg g(x) + \deg h(x) = 2 + 0$).

 $\therefore f(x)$ is irreducible. •

3. Let R be a commutative ring with unity and let $a, b \in R$. Prove $(a, b) = \{ar + bs | r, s \in R\}$.

Proof:

Let $I = \{ar + bs: r, s \in R\}$. We first will show I is an ideal that contains a and b.

We have $0 = a \cdot 0 + b \cdot 0 \in I$.

Let ar + bs, $ar' + bs' \in I$, then since R is a commutative ring,

$$(ar + bs) - (ar' + bs') = a(r - r') + b(s - s') \in I$$
, as $r - r' \in R$ and $s - s' \in R$.

Let $t \in R$. Then $(ar + bs)t = a(rt) + b(st) \in I$ as $rt, st \in R$.

Since 1, $0 \in R$, then $a = a \cdot 1 + b \cdot 0 \in I$ and $b = a \cdot 0 + b \cdot 1 \in I$.

 \therefore *I* is an ideal that contains *a* and *b*.

Since (a, b) is the smallest ideal that contains a and b, then $(a, b) \subseteq I$.

We now show the reverse containment.

Let $w \in I$. Then w = ar + bs for some $r, s \in R$.

By definition of ideal, $ar \in (a, b)$ and $bs \in (a, b)$. And so $w = ar + bs \in (a, b)$.

$$(a,b)\subseteq I=\{ar+bs: r,s\in R\}, \text{ hence } (a,b)=\{ar+bs: r,s\in R\}.$$

4. Prove that every field is a PID.

Proof:

Let k be a field. Let I be an ideal in k. If $I = \{0\}$, then $I = \{0\}$ then $I = \{0\}$, then $I = \{0\}$ t

:.
$$aa^{-1} = 1 \in I$$
, hence $k = \{1 \cdot r : r \in k\} = I$.

Thus the only ideals in k are (0) and k.

That is, every ideal in *k* is a principal ideal, hence *k* is a PID. •

- **5.** Let R be an integral domain. Prove that for any $a, b \in R$, the following are equivalent.
- (a) a and b are associates
- **(b)** *a*|*b and b*|*a*
- (c) (a) = (b)

Proof:

(a) \Rightarrow (b): Assume *a* and *b* are associates in *R*, an integral domain with unity.

Then a = bu for some unit $u \in R$. Thus $\exists u^{-1} \in R$ such that $au^{-1} = buu^{-1} = b$.

Since $a = bu \Rightarrow a|b$ and $au^{-1} = b \Rightarrow b|a$, then we have a|b and b|a, as desired.

(b) \Rightarrow **(c)**: Assume a|b and b|a. Then b = au and a = bv for some $u, v \in R$.

Let $w \in (a)$. Then w = ar for some $r \in R$. So $w = bvr \in (b)$, as $vr \in R$. Thus $(a) \subseteq (b)$.

To show the reverse containment, let $y \in (b)$, Then y = bs for some $s \in R$.

And $y = aus \in (a)$, as $us \in R$, hence $(b) \subseteq (a)$. \therefore (a) = (b).

(c) \Rightarrow (a): Assume (a) = (b).

Since $a \in (a)$ and $b \in (b)$, then $a \in (b)$ and $b \in (a)$,

hence b = au and a = bv for some $u, v \in R$.

Thus, a = auv which implies that 1 = uv, since R is an integral domain.

And so u and v are units, which implies a and b are associates. •

6. (a) Let R be an integral domain and $p \in R$. Prove that if p is a prime element, then p is irreducible.

Proof:

Assume *p* is prime. Then $p \neq 0$ and *p* is not a unit.

Let p = ab be a factorization of p. Note that this implies a|p.

Since $p = p \cdot 1 = ab$, then p|ab. And since p is prime then p|a or p|b.

If p|a then we have p|a and a|p, so by #5 above, we have that p and a are associates.

Thus p = au for some unit u. So then p = au = ab. And since R is an integral domain, we have that u = b by cancellation.

Hence *b* is a unit.

Similarly, if p|b, then p and b are associates, which implies a is a unit.

 \therefore p is irreducible.

6. (b) Let R be a PID and $p \in R$. Prove that if p is irreducible, the p is a prime element.

Proof:

Assume *p* is irreducible. Then $p \neq 0$ and *p* is not a unit.

Suppose $p \mid ab$ for some $a, b \in R$. So pq = ab for some $q \in R$.

Since *R* is a PID, then $\exists c \in R$ such that (a, p) = (c).

This gives us 3 results:

(1) By #3 above, $\exists x, y \in R$ such that ax + py = c; (2) $p \in (c)$; and (3) $a \in (c)$.

 $p \in (c) \Rightarrow p = cm$ and $a \in (c) \Rightarrow a = cn$ for some $m, n \in R$

Since *p* is irreducible, then *c* is a unit or *m* is a unit.

If *m* is a unit, then $c = pm^{-1}$, hence $a = pm^{-1}n$. So p|a.

If *c* is a unit, then $1 = cc^{-1} = axc^{-1} + pvc^{-1}$.

So $b = baxc^{-1} + bpyc^{-1} = pqxc^{-1} + pbyc^{-1} = p(qxc^{-1} + byc^{-1})$, as *R* is commutative.

This gives us that p|b.

 $\therefore p|b \text{ or } p|a$, hence p is a prime element. •

7. Let R be a commutative ring with unity. Let a, $b \in R$ and let d be a GCD of a and b. Prove that ud is also a GCD of a and b for every $u \in U(R)$.

Proof:

Let *R* be a commutative ring with unity.

Let $a, b \in R$ and let d be a gcd of a and b. Thus, a = dr and b = ds for some $r, s \in R$.

Since $1 \in R$, then $U(R) \neq \emptyset$, and we can let $u \in U(R)$.

So ua = udr and ub = uds. Since R is commutative, then

 $a = u^{-1}udr = ud(ru^{-1})$ and $b = u^{-1}uds = ud(su^{-1})$.

Thus ud|a and ud|b.

Moreover, since *d* is a gcd of *a* and *b*, then c|a and $c|b \Rightarrow c|d$, hence c|ud.

 \therefore *ud* is a gcd of *a* and *b* \forall *u* \in *U*(*R*). •

8. Let R be a PID and a, $b \in R$. Prove (a, b) = (d) where d is a GCD of a and b.

Proof:

Let *R* be a PID. Let $a, b \in R$. Let I = (a, b).

By #3 above, $(a, b) = \{ar + bs | r, s \in R\}$.

Since *R* is a PID, then $\exists d \in R$ such that (a, b) = (d).

We will show *d* is a gcd of *a* and *b*.

Since $a \cdot 1 + b \cdot 0 = a \in I$, then a = dk for some $k \in R$. So $d \mid a$.

Similarly d|b.

Assume c|a and c|b, then a = cm and b = cn for some $m, n \in R$.

And since $d \in I$, then $\exists x, y \in R$ such that

d = ax + by = cmx + cny = c(mx + ny).

 \therefore c|d, hence d is a gcd of a and b.