Debra Griffin Galois Theory II Worksheet #1, 2

- **1.** Let E be a field and S and T be subsets of Aut(E).
- (a) Prove that E^S is a subfield of E.

Proof:

Clearly $E^S \subseteq E$.

Let $\varphi \in S$.

 $0 \in E^S$ and $1 \in E^S$ as $\varphi(0) = 0$ and $\varphi(1) = 1$ by homomorphism properties, so $E^S \neq \emptyset$.

Let $a, b \in E^s$. Then by homomorphism properties we have

$$\varphi(a-b) = \varphi(a) - \varphi(b) = a - b$$
, $\varphi(ab) = \varphi(a)\varphi(b) = ab$, and $\varphi(a^{-1}) = \varphi(a)^{-1} = a^{-1}$.

Since φ was arbitrary, then a - b, ab, and $a^{-1} \in E^S$.

Hence E^S is a subfield of E.

(b) Prove that if $S \subseteq T$, then $E^T \subseteq E^S$.

Proof:

Let $a \in E^T$. Let $\sigma \in S$. Since $S \subseteq T$, then $\sigma \in T$. Thus $\sigma(a) = a$. Hence $a \in E^S$.

(c) If S is an infinite set, then $[E:E^S] = \infty$. (Hint: Prove $[E:E^S] \ge n$, for all $n \in \mathbb{N}$.)

Proof:

Let $n \in \mathbb{N}$. Let $T = {\sigma_1, ..., \sigma_n} \subseteq S$. By part (b), $E^S \subseteq E^T$.

By part (a) E^T and E^S are subfields of E, hence E^S is a subfield of E^T .

If $[E:E^T]$ or $[E^T:E^S]$ is infinite, then $[E:E^S]$ is infinite by Theorem 39 of Extension Fields Part I. Assume both are finite.

Then $[E:E^S] = [E:E^T][E^T:E^S]$

by Lecture Notes 3/15/10 (Let K/E be an extension and E/F be an extension. If [K:E] and [E:F] are both finite, then [K:F] = [K:E][E:F].)

Since |T| = n, then by Lecture Notes 4/7/10 (If $S \subseteq Aut(E)$ and |S| = n, then $[E:E^S] \ge n$),

we have $[E:E^T] \ge n$. And $[E^T:E^S] \ge 1$ as extension field degrees are always ≥ 1 .

Thus $[E:E^S] \ge n$, $\forall n \in \mathbb{N}$.

 $\therefore [E:E^S] = \infty.$

2. Let K be the splitting field of some polynomial over F, and let $u, v \in K$. Prove that if u and v have the same minimal polynomial in F[x], then there exists $\sigma \in Gal(K/F)$ such that $\sigma(u) = v$. (**Hint**: You may want to look back at the work we did to show splitting fields are unique.)

Proof:

If *u* and *v* have the same minimal polynomial p(x) in F[x], then

$$\overline{\varphi}_u$$
: $F[x]/(p(x)) \to F(u)$ defined by $f(x) + (p(x)) \mapsto f(u)$ and

$$\overline{\varphi}_{u}: F[x]/(p(x)) \to F(u)$$
 defined by $f(x) + (p(x)) \mapsto f(v)$ are isomorphisms

by Lecture Notes 3/10/10 (If E/F is an extension, $a \in E$, and a is algebraic over F, then $F(a) \cong F[x](p(x))$ where p(x) is an irreducible polynomial in F[x] such that a is a root.)

Thus ψ : $F(u) \to F(v)$ defined by $\psi(a) = \overline{\psi}_v(\overline{\psi}_u^{-1}(a))$ is an isomorphism.

Note that
$$\forall c \in F$$
, $\psi(c) = \overline{\varphi}_v(\overline{\varphi}_u^{-1}(c)) = \overline{\varphi}_v(c + (p(x))) = c$, and

$$\psi(u) = \overline{\varphi}_v(\overline{\varphi}_u^{-1}(u)) = \overline{\varphi}_v(x + (p(x))) = v$$
. That is, ψ fixes F and sends u to v .

Since K is a splitting field of some polynomial f(x) over F, it is a splitting field of f(x) over both F(u) and F(v).

So we have

- (1) $f(x) \in F[x] \subseteq F(u)[x]$ and $F[x] \subseteq F(v)[x]$ where F is a field,
- (2) K is a splitting field for f(x) over F(u),
- (3) ψ : $F(u) \rightarrow F(v)$ is an isomorphism,
- (4) K is a splitting field for f(x) over F(v).

Then by Lecture Notes 3/24/10 (If $f(x) \in F[x]$ where F is a field, E is a splitting field for f(x) over F, $\phi:F \to F'$ is an isomorphism, $\phi^*:F[x] \to F'[x]$ is an isomorphism induced by ϕ , E' is a splitting field for $f^*(x)$ over F', then \exists isomorphism $\Phi:E \to E'$ such that Φ extends ϕ and ϕ^* .)

there is an isomorphism $\Phi: K \to K$ that extends ψ .

Thus, Φ is an automorphism of K that fixes F. Thus $\Phi \in \operatorname{Gal}(K/F)$ and $\Phi(u) = v$.