Debra Griffin Galois Theory I Worksheet #1 - 4

1. Let $p(x) = x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$, and let α be a root of p(x). Prove that the splitting field for p(x) is $\mathbb{Q}(\alpha)$.

Proof:

$$p(x) = (x - e^{\frac{2\pi i}{5}})(x - e^{\frac{4\pi i}{5}})(x - e^{\frac{6\pi i}{5}})(x - e^{\frac{8\pi i}{5}}).$$
So $\mathbb{Q}(e^{\frac{2\pi i}{5}}, e^{\frac{4\pi i}{5}}, e^{\frac{6\pi i}{5}}, e^{\frac{8\pi i}{5}})$ is a splitting field for $p(x)$.

Claim: The 5th roots of unity, form a multiplicative group of order 5.

Let T be the set containing the 5^{th} roots of unity.

Then the elements of *T* are roots of $f(x) = x^5 - 1$.

Note that $T \subseteq \mathbb{C}$, so multiplication is associative and commutative in T.

 $1 \in T$ as $1^5 = 1$. Let $a, b \in T$. Then $a^5 = 1 = b^5$ as f(a) = f(b) = 0.

And we have $(ab)^5 = a^5 \cdot b^5 = 1 \cdot 1 = 1$. So *T* is closed under multiplication.

Since $(a^4)^5 = (a^5)^4 = 1^4 = 1$, then $\forall a \in T$, $a^4 \in T$. And $a \cdot a^4 = a^5 = 1$. Thus each element of T has an inverse. \therefore T is a multiplicative group.

Since the elements of *T* are roots of f(x), then $|T| \le 5$.

Since $f'(x) = 5x^4$, then f and f' are relatively prime.

Hence f has no repeated roots, which gives us that |T| = 5.

Since 5 is prime, then the group is cyclic, and each nonidentity element generates the whole group.

$$\therefore \text{ If } \alpha \in \{e^{\frac{2\pi i}{5}}, e^{\frac{4\pi i}{5}}, e^{\frac{6\pi i}{5}}, e^{\frac{8\pi i}{5}}\}, \text{ then } \mathbb{Q}(e^{\frac{2\pi i}{5}}, e^{\frac{4\pi i}{5}}, e^{\frac{6\pi i}{5}}, e^{\frac{8\pi i}{5}}) = \mathbb{Q}(\alpha).$$

- **2.** Let E be a field extension of F.
- (a) Prove that Gal(E/F) is a subgroup of Aut(E).

Proof:

Clearly $Gal(E/F) \subseteq Aut(E)$.

 $i: E \to E$, the identity map, is an automorphism that fixes F, hence $Gal(E/F) \neq \emptyset$.

If $\sigma, \tau \in Gal(E/F)$, then since Aut(E) is a group under composition (by Lecture Notes 4/5/10), we know $\sigma \circ \tau \in Aut(E)$.

Since $\sigma, \tau \in Gal(E/F)$, then $\forall c \in F$, $(\sigma \circ \tau)(c) = \sigma(\tau(c)) = \sigma(c) = c$.

So $\sigma \circ \tau \in Gal(E/F)$. Hence Gal(E/F) is closed under composition.

Since $Gal(E/F) \subseteq Aut(E)$, i is the identity of Aut(E), and i fixes F, then i is the identity of Gal(E/F).

Since every element σ of Aut(E) has an inverse, σ^{-1} , then if $\sigma \in \operatorname{Gal}(E/F)$, we have

 $\forall c \in F$, $\sigma(c) = c$, and $\sigma^{-1}(c) = \sigma^{-1}(\sigma(c)) = c$, hence $\sigma^{-1} \in Gal(E/F)$.

 \therefore Gal(E/F) satisfies all the axioms of a subgroup.

2. (b) Prove that if E is an extension of \mathbb{Q} , then $Gal(E/\mathbb{Q}) = Aut(E)$. (In other words, any automorphism of E will fix \mathbb{Q} .)

Proof:

```
By definition Gal(E/\mathbb{Q}) \subseteq Aut(E).

Let \sigma \in Aut(E).

Since \sigma(1_{\mathbb{Q}}) = 1_E, then \forall n \in \mathbb{N}, \sigma(n) = \sigma(n \cdot 1_{\mathbb{Q}}) =
= \sigma(1_{\mathbb{Q}} + 1_{\mathbb{Q}} + \dots + 1_{\mathbb{Q}}) \text{ (for } n \text{ summands)}
= \sigma(1_{\mathbb{Q}}) + \sigma(1_{\mathbb{Q}}) + \dots + \sigma(1_{\mathbb{Q}})
= 1_E + 1_E + \dots + 1_E \text{ (for } n \text{ summands)}
= n \cdot 1_E
= n.
```

And by hmo properties, we have

```
\forall n \in \mathbb{N} \ \sigma(-n) = -\sigma(n) = -n \ \text{and} \ \sigma(n^{-1}) = \sigma(n)^{-1} = n^{-1}. Let c \in \mathbb{Q}, then c = ab^{-1} where a, b \in \mathbb{Z}, b \neq 0.
Thus we have \sigma(c) = \sigma(ab^{-1}) = \sigma(a)\varphi(b^{-1}) = \sigma(a)\ \sigma(b)^{-1} = ab^{-1} = c. \therefore \sigma fixes \mathbb{Q}.
```

(c) Prove that if E is an extension of \mathbb{F}_p , then $Gal(E/\mathbb{F}_p) = Aut(E)$. (In other words, any automorphism of E will fix \mathbb{F}_p .)

Proof:

```
By definition Gal(E/\mathbb{Q}) \subseteq Aut(E).

Let \sigma \in Aut(E).

Since \mathbb{F}_p \cong \mathbb{Z}_p and \sigma(1_{\mathbb{Z}_p}) = 1_E, then \forall a \in \mathbb{Z}_p, \sigma(a) = \sigma(a \cdot 1_{\mathbb{Q}}) = \sigma(1_{\mathbb{Z}_p} + 1_{\mathbb{Z}_p} + \dots + 1_{\mathbb{Z}_p}) (for a summands)
= \sigma(1_{\mathbb{Z}_p}) + \sigma(1_{\mathbb{Z}_p}) + \dots + \sigma(1_{\mathbb{Z}_p})
= 1_E + 1_E + \dots + 1_E (for a summands)
= a \cdot 1_E
= a.
```

 σ fixes \mathbb{F}_p .

3. Determine $Gal(\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2}))$.

Proof:

Let
$$f(x) = x^2 - \sqrt{2} = (x + \sqrt[4]{2})(x - \sqrt[4]{2})$$
.

Note that $\sqrt[4]{2}$, $-\sqrt[4]{2} \notin \mathbb{Q}(\sqrt{2})$, for if $\sqrt[4]{2} = a + b\sqrt{2}$ for some $a, b \in \mathbb{Q}$, then

squaring both sides and collecting like terms would give us

$$0 = a^2 + 2b^2 + (2ab - 1)\sqrt{2}.$$

And linear independence of the basis elements of $\{1, \sqrt{2}\}$ determines that $a^2 + 2b^2 = 0$. This would imply that $a^2 = -2b^2$, a contradiction as $a, b \in \mathbb{Q}$.

Thus *f* is irreducible over $\mathbb{Q}(\sqrt{2})$.

And clearly, $\mathbb{Q}(\sqrt[4]{2})$ is the splitting field for f.

Since *f* is irreducible over $\mathbb{Q}(\sqrt{2})$, we have

$$\mathbb{Q}(\sqrt{2})(\sqrt[4]{2}) \cong \mathbb{Q}(\sqrt{2})[x]/(f) \cong \mathbb{Q}(\sqrt{2})(-\sqrt[4]{2})$$
. Thus, $\forall \sigma \in Gal(\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2}))$, $\sigma(\sqrt[4]{2}) = \pm \sqrt[4]{2}$.

And by definition of Gal($\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$), σ fixes $\mathbb{Q}(\sqrt{2})$. So then

if
$$\sigma(\sqrt[4]{2}) = \sqrt[4]{2}$$
, then $\sigma = Id$.

If
$$\sigma(\sqrt[4]{2}) = -\sqrt[4]{2}$$
, then $\sigma \neq Id$.

$$\therefore \operatorname{Gal}(\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})) \cong \mathbb{Z}_2.$$

4. Let $\sigma_p: \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ be given by $\sigma_p(a) = a^p$. This map is called the Frobenius map. (a) Prove $\sigma_p \in Aut(\mathbb{F}_{p^n})$.

Proof:

Let $a, b \in \mathbb{F}_{p_n}$. By commutative properties of a field and char $\mathbb{F}_{p_n} = p$, we have $\sigma_p(ab) = (ab)^p = a^p b^p = \sigma_p(a)\sigma_p(b)$ and $\sigma_p(a+b) = (a+b)^p = a^p + b^p = \sigma_p(a) + \sigma_p(b)$. Thus, σ_p is a homomorphism.

Since \mathbb{F}_{p_n} is a field, and ker σ_p is an ideal, then ker $\sigma_p = \{0\}$ or \mathbb{F}_{p_n} . Homomorphism properties $\sigma_p(0) = 0$ and $\sigma_p(1) = 1$ give us that ker $\sigma_p \neq \mathbb{F}_{p_n}$. Thus, ker $\sigma_p = \{0\}$, hence σ_p is injective.

And since \mathbb{F}_{p_n} is finite and σ_p is injective, then σ_p is surjective by basic set theory.

$$:: \sigma_p \in \operatorname{Aut}(\mathbb{F}_{p_n}).$$

4. (b) Determine the order of σ_p in $Aut(\mathbb{F}_{p_n})$.

ord
$$(\sigma_p) = n$$
.

Proof:

Since $|\mathbb{F}_{p_n}| = p^n$ and $\mathbb{F}_{p_n}^*$ is a multiplicative group,

then $\forall a \in \mathbb{F}_{p^n}$ such that $a \neq 0$, $a^{p^n-1} = 1$. Hence $a^{p^n} = a$.

Since $(\sigma_p)^n(a) = (((a^p)^p)^p \cdots)^p = a^{p^n} = a$, then ord $(\sigma_p) \le n$.

Suppose ord $(\sigma_p) = d < n$. Then $p^d < p^n$. Let $f(x) = x^{p^d} - x$.

We know f has at most p^d roots, but if we have $a = (\sigma_p)^d(a) = a^{p^d}$ for any $a \in \mathbb{F}_{p^n}$, then then all p^n elements of \mathbb{F}_{p^n} are roots of f, a contradiction.

 \therefore ord $(\sigma_p) = n$.