Content:

char(R)Definition

What must a field of order 4 look like? Example

If *F* is a field, char F = 0, then *F* contains a subfield $\cong \mathbb{Q}$. Proposition

If char F = p, then F contains a subfield $\cong \mathbb{Z}_p$.

Every finite field has order p^n for some prime p and some positive Proposition

integer n.

Example If $p(x) = x^3 + x + 1 \in \mathbb{Z}_5[x]$, then $F = \mathbb{Z}_5[x]/(p(x))$ is a field.

Definition extension field

Definition [E:F]

If $F = \mathbb{Z}_5[x]/(p(x))$, then $[F: \mathbb{Z}_5] = 3$ Example

 $[\mathbb{Q}[i]:\mathbb{Q}] = 2$ Example Definition F[a], F(a)

Proposition $F(a) \cong \operatorname{Frac}(F[a]).$

Proposition If E/F is an extension and $a \in E$, then $F[a] = \varphi_a(F[x])$ where

 $\varphi_a: F[x] \to F[a]$ is the evaluation homomorphism.

Recall

(From lecture notes 11/18/09) char (R) = $n \Leftrightarrow n$ is the smallest positive integer such that $n \cdot 1_R = 0$.

We say char (R) = 0 if no such positive integer exists.

Proposition If *F* is a field, then char (F) = 0 or char (F) = p for some prime *p*.

Proof:

If char (F) = 0, we're done.

Assume char (F) = m, m a positive composite integer.

Then m = kt for integer k, t such that 1 < k < m and 1 < t < m.

So we have $(k \cdot 1_F)(t \cdot 1_F) = \underbrace{(1_F + 1_F + \dots + 1_F)}_{k \text{ summands}} \underbrace{(1_F + 1_F + \dots + 1_F)}_{t \text{ summands}}$

$$=\underbrace{(1_F \bullet 1_F + 1_F \bullet 1_F + \dots + 1_F \bullet 1_F)}_{kt \text{ summands}} = \underbrace{(1_F + 1_F + \dots + 1_F)}_{kt \text{ summands}} = m \bullet 1_F = 0 (*)$$

Since *F* has no zero divisors, then $(k \cdot 1_F)(t \cdot 1_F) = 0$ implies $k \cdot 1_F = 0$ or $t \cdot 1_F = 0$. But *m* is the smallest positive integer such that $m \cdot 1_R = 0$ yet 1 < k < m and 1 < t < m, a contradiction. \therefore char (F) = p, for some prime integer p.

Example

What must a field of order 4 look like?

 $F = \{0, 1, a, b\}$. So char (F) = 2 (by above proposition)

 $F \cong Klein 4$ as a group.

 $|F^*| = 3$ and (F^*, \bullet) is a group.

So $F^* \cong \mathbb{Z}_3$ as a group under •.

Note

We cannot have a field of order 6. If so, then by Cauchy's Theorem, we must have an element of order 2 and one of order 3. So then char (F) = 2, but $2 \cdot a \neq 0$ where ord(a) = 3, a contradiction.

Proposition Let F be a field. If char (F) = 0, then F contains a subfield isomorphic to \mathbb{Q} . If char (F) = p, then F contains a subfield isomorphic to \mathbb{Z}_p .

Proof:

Define φ : $\mathbb{Z} \to F$ where $\varphi(n) = n \cdot 1_F$. Then $\varphi(m+n) = (m+n) \cdot 1_F = m \cdot 1_F + n \cdot 1_F = \varphi(m) + \varphi(n)$ and $\varphi(mn) = (mn) \cdot 1_F = (m \cdot 1_F)(n \cdot 1_F) = \varphi(m) \varphi(n)$ by (*) in proof of "If F is a field, then char (F) = 0 or char (F) = p for some prime p." \therefore φ is a homomorphism.

By the First Isomorphism Theorem, $\mathbb{Z}/\ker \varphi \cong \varphi(\mathbb{Z})$.

Case 1: If char (F) = 0, then ker $\varphi = \{0\}$. So $\mathbb{Z} \cong \varphi(\mathbb{Z})$.

Recall "Frac(\mathbb{Z}) $\cong \mathbb{Q}$ by homomorphism ψ : Frac(\mathbb{Z}) $\to \mathbb{Q}$ where $\psi([a, b]) = ab^{-1}$ ", Lecture Notes 12/7/09.

Since $\operatorname{Frac}(\mathbb{Z}) \cong \mathbb{Q}$ and $\mathbb{Z} \cong \varphi(\mathbb{Z})$, then $\operatorname{Frac}(\varphi(\mathbb{Z})) \cong \mathbb{Q}$.

But Frac $(\varphi(\mathbb{Z}))$ is the smallest field containing $\varphi(\mathbb{Z})$ and F is "a" field containing $\varphi(\mathbb{Z})$, so $\operatorname{Frac}(\varphi(\mathbb{Z})) \subseteq F$.

Case 2: If char (F) = p, then $\ker \varphi = (p)$. So $\mathbb{Z}_p = \mathbb{Z}/(p) \cong \varphi(\mathbb{Z}) \subseteq F$.

Proposition Every finite field has order p^n for some prime p and some positive integer *n*.

Proof:

Let F be a finite field. Then char (F) = p (otherwise $|F| \cdot a \neq 0 \ \forall \ a \in F$, a contradiction to Cauchy's Theorem)

By the previous proposition, $\mathbb{Z}_p \cong E$ where *E* is a subfield of *F*. And this implies *E* is a subspace of *F*, hence *F* is a vector space over $E \cong \mathbb{Z}_p$. Let $\dim_{\mathbb{Z}_p} F = n$. Then, since $E \cong \mathbb{Z}_p$, vector space homework #9 gives us that $|F| = p^n$.

Example

If $p(x) = x^3 + x + 1 \in \mathbb{Z}_5[x]$, then $F = \mathbb{Z}_5[x]/(p(x))$ is a field.

Proof:

p(x) has no roots in $\mathbb{Z}_5[x]$, and is of 3rd degree, hence is irreducible in $\mathbb{Z}_5[x]$. Since $\mathbb{Z}_5[x]$ is a PID then (p(x)) is maximal. Thus, $F = \mathbb{Z}_5[x]/(p(x))$ is a field.

Example (Continued from previous example)

If $p(x) = x^3 + x + 1 \in \mathbb{Z}_5[x]$ and $F = \mathbb{Z}_5[x]/(p(x))$ then |F| = 125.

Proof:

Elements in *F* are of the form f(x) + (p(x)) where $f(x) \in F = \mathbb{Z}_5[x]$.

Since \mathbb{Z}_5 is a field, then $F = \mathbb{Z}_5[x]$ is an ER, hence we can use the

division algorithm. There exist unique q(x) and $r(x) \in \mathbb{Z}_5[x]$ such that

f(x) = p(x)q(x) + r(x) where r(x) = 0 and deg $r(x) < \deg p(x)$.

So f(x) + (p(x)) = p(x)q(x) + r(x) + (p(x)) = r(x) + (p(x))

since $p(x)q(x) \in (p(x))$.

So any element in F can be expressed as r(x) + (p(x)) where

 $r(x) = a_0 + a_1x + a_2x^2$ for some $a_i \in \mathbb{Z}_5$.

These cosets are unique as

 $r_1(x) + (p(x)) = r_2(x) + (p(x)) \Rightarrow r_1(x) - r_2(x) \in (p(x)), p(x)$ is

of minimal degree in (p(x)), and deg $(r_1(x) - r_2(x)) \le 2$, hence

 $r_1(x)-r_2(x)=0.$

So $|F| = 5^3 = 125$.

Note We have also shown that any element in *F* can be expressed uniquely

as a linear combination of 1 + (p(x)), x + (p(x)), and $x^2 + (p(x))$.

So an isomorphic copy of \mathbb{Z}_5 is a subfield of F.

Definition Let E/F be an extension. The degree of E/F is denoted [E:F] is the

dimension of *E* over *F* as a vector space.

i.e. $[E : F] = \dim_F E$.

Example $F = \mathbb{Z}_5[x]/(p(x))$, where $p(x) = x^3 + x + 1$, then F/\mathbb{Z}_5 is an extension and

 $[F: \mathbb{Z}_5] = 3.$

Example $\mathbb{Q}[i]/\mathbb{Q}$ is an extension and $[\mathbb{Q}[i]:\mathbb{Q}] = 2$.

Note $[F: \mathbb{Z}_5] = 3$ and $x^3 + x + 1$ has degree 3 is not a coincidence.

Definition Let E/F be an extension and $a \in E$.

(1) F[a] is the smallest ring containing F and a.

(2) F(a) is the smallest field containing F and a.

Note We know $a \in F[a]$ and and $a \in F(a)$.

So if $a \neq 0$, then $a^{-1} \in F(a)$ but might not be in F[a].

So F[a] is bigger than F(a).

Note $F[a] \subseteq F(a)$ since F(a) is also a ring containing F and a.

Proposition $F(a) \cong \operatorname{Frac}(F[a])$.

Proof:

Since F(a) is a field, hence a ring that contains F and a and F[a] is the smallest ring that contains F and a, then $F[a] \subseteq F(a)$. Thus, F(a) is a field that contain F[a].

Recall from Lecture Notes 12/7/09,

- (1) Frac(R) contains an isomorphic copy of R and
- (2) Frac(R) is the smallest field containing [an ismo copy of] R. Since Frac(F[a]) is the smallest field containing the ring F[a], and F(a) is "a" field that contains F[a], then Frac(F[a]) " \subseteq " F(a). To show the reverse "containment", notice that F(a) is the smallest field that contains F and a while Frac(F[a]) is "a" field that contains F and a. Thus, $F(a) \cong \operatorname{Frac}(F[a])$.

Proposition Let E/F be an extension and $a \in E$, then $F[a] = \varphi_a(F[x])$ where $\varphi_a:F[x] \to F[a]$ is the evaluation homomorphism.

Proof:

Let $\varphi_a : F[x] \to F[a]$ be defined by $\varphi_a(f(x)) = f(a) \ \forall f(x) \in F[x]$. Recall $\varphi_a : F[x] \to F$ is a homomorphism (Lecture Notes 11/18/09).

If $f(x) = c_0 + c_1x + c_2x^2 + \cdots + c_nx^n$, for some $c_i \in F$, then $\varphi_a(f(x)) = c_0 + c_1a + \cdots + c_na^n \in \varphi_a(F[x])$. Thus $\varphi_a(f(x)) \in F[a]$ by closure.

(ie. $c_i a^i \in F[a]$ by definition of F[a], hence $\sum_{i=0}^n c_i a^i \in F[a]$ by closure.)

 $\therefore \varphi_a(F[x]) \subseteq F[a].$

To show the reverse containment,

we will show $\varphi_a(F[x])$ is "a" ring that contains F and a,

hence F[a], the smallest ring containing F and a, is contained in $\varphi_a(F[x])$.

Let $x \in F[x]$. Then $\varphi_a(x) = a$ and $\varphi_a(x) \in \varphi_a(F[x])$, so $a \in \varphi_a(F[x])$.

Let $b \in F$, then $b = bx^0 \in F[x]$, and $\varphi_a(bx^0) = b$.

So then $\varphi_a(bx^0) \in \varphi_a(F[x])$, hence $b \in \varphi_a(F[x])$. Thus $F \subseteq \varphi_a(F[x])$.

And so we have $F[a] \subseteq \varphi_a(F[x])$.

 $F[a] = \varphi_a(F[x])$ as desired.