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Content:
Definition  char (R)
Example What must a field of order 4 look like?
Proposition If Fis a field, char F = 0, then F contains a subfield = Q.
If char F = p, then F contains a subfield = Z,.
Proposition Every finite field has order p” for some prime p and some positive
integer n.
Example If p(x) =x3 +x+ 1 € Zs[x], then F = Zs[x]/(p(x)) is a field.
Definition  extension field
Definition [E: F]
Example If F=7s[x]/(p(x)), then [F: Zs] =3
Example [Q[i]:Q] =2
Definition  Fla], F(a)
Proposition F(a) = Frac(F[a]).
Proposition If E/Fis an extension and a € E, then F[a] = @4(F[x]) where
@a:F[x] — F[a] is the evaluation homomorphism.
Recall (From lecture notes 11/18/09) char (R) = n < n is the smallest
positive integer such thatn e 1z = 0.
We say char (R) =0 if no such positive integer exists.
Proposition If Fis a field, then char (F) = 0 or char (F) = p for some prime p.
Proof:
If char (F) = 0, we're done.
Assume char (F) = m, m a positive composite integer.
Then m = kt for integer k, t suchthat 1 <k<mand 1 <t<m.
Sowe have (ke 1F)(te 1r) = (1r+ 1p+ --- + 15) (1p+ 1p+ --- + 1p)
- A ~ _J/
k summands t summands
=(lrelp+1lpelp+ - -+ 1pe1p)=(1r+ 1p+ -+ 1g)=me 1p=0 (¥)
— —~ _/ - ~ _/
kt summands kt summands
Since F has no zero divisors, then (ke 1)(t » 1r) = 0 implies
kelp=0orte 1r=0. But mis the smallest positive integer such
thatme 1p=0yet 1 <k<mand 1 <t < m,a contradiction.
. char (F) = p, for some prime integer p.
Example What must a field of order 4 look like?

F={0, 1, a, b}. So char (F) = 2 (by above proposition)
F =Klein 4 as a group.

|F*| = 3 and (F*, ¢) is a group.

So F* = 7,3 as a group under e.
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We cannot have a field of order 6. If so, then by Cauchy’s Theorem,
we must have an element of order 2 and one of order 3. So then
char (F) = 2, but 2 e a # 0 where ord(a) = 3, a contradiction.

Let F be a field. If char (F) = 0, then F contains a subfield isomorphic
to Q. If char (F) = p, then F contains a subfield isomorphic to Zj.

Proof:

Define : Z — F where ¢(n) =n e 1. Then
e(m+n)=(m+n)elp=melrp+nelr =¢@(m)+qe(n)and

@(mn) = (mn) e 1r=(m e 1f)(n * 1r) = p(m) @(n) by (*) in proof of
“If Fis a field, then char (F) = 0 or char (F) = p for some prime p.”
. @ is a homomorphism.

By the First [somorphism Theorem, Z /ker ¢ = ¢(Z).

Case 1: If char (F) = 0, then ker ¢ = {0}. So Z = ¢(Z).

Recall “Frac(Z) = Q by homomorphism y: Frac(Z) — Q where
Y([a, b]) = ab-1”, Lecture Notes 12/7/09.

Since Frac(Z) = Q and Z = ¢(Z), then Frac (¢(Z)) = Q.

But Frac (¢(Z)) is the smallest field containing @(Z) and Fis “a” field
containing ¢(Z), so Frac(¢(Z)) € F.

Case 2: If char (F) = p,thenker ¢ = (p). SoZ,=7Z/(p) = ¢(Z) C F.

Every finite field has order p” for some prime p and some positive
integer n.

Proof:

Let F be a finite field. Then char (F) = p (otherwise |F|ea# 0V a €EF,
a contradiction to Cauchy’s Theorem)

By the previous proposition, Z, = E where E is a subfield of F.

And this implies E is a subspace of F, hence F is a vector space over

E = 7Zp. Let dimz,F = n. Then, since E = Zp, vector space homework #9
gives us that | F | = p".

If p(x) =x3 +x+ 1 E Zs[x], then F = Zs[x]/(p(x)) is a field.

Proof:

p(x) has no roots in Zs[x], and is of 34 degree, hence is irreducible in
Zs[x]. Since Zs[x] is a PID then (p(x)) is maximal.

Thus, F = Zs[x]/(p(x)) is a field.
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(Continued from previous example)
If p(x) =x3+x+1EZs[x] and F = Zs[x]/(p(x)) then | F | = 125.

Proof:

Elements in F are of the form f (x) + (p(x)) where f (x) € F = Zs[x].
Since Zs is a field, then F = Zs[x] is an ER, hence we can use the
division algorithm. There exist unique q(x) and r(x) € Zs[x] such that
f(x) =p(x)q(x) + r(x) where r(x) = 0 and deg r(x) < deg p(x).
Sof(x) + (p(x)) = p(x)q(x) + r(x) + (p(x)) = r(x) + (p(x))

since p(x)q(x) € (p(x)).

So any element in F can be expressed as r(x) + (p(x)) where

r(x) = ao + aix + azx? for some a; € Zs.

These cosets are unique as

ri(x) + (p(x)) = r2(x) + (p(x)) = ri(x) - r2(x) € (p(x)), p(x) is

of minimal degree in (p(x)), and deg (r1(x) - r2(x)) < 2, hence
rl(x) - r'z(X) =0.

So | F|=53=125.

We have also shown that any element in F can be expressed uniquely
as a linear combination of 1 + (p(x)), x + (p(x)), and x2 + (p(x)).
So an isomorphic copy of Zs is a subfield of F.

Let E/F be an extension. The degree of E/F is denoted [E : F] is the
dimension of E over F as a vector space.
i.e. [E: F] =dimfE.

F=17s|x]/(p(x)), where p(x) =x3 + x + 1, then F/ Zs is an extension and
[F:Zs]=3.

Q[i]/Q is an extension and [Q[i] : Q] = 2.

[F:Zs] =3 and x3 + x+ 1 has degree 3 is not a coincidence.
Let E/F be an extension and a € E.

(1) Fla] is the smallest ring containing F and a.

(2) F(a) is the smallest field containing F and a.

We know a € F[a] and and a € F(a).
Soifa # 0, then a-! € F(a) but might not be in F[a].
So Fl[a] is bigger than F(a).

Fla] € F(a) since F(a) is also a ring containing F and a.
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F(a) = Frac(F[a]).

Proof:

Since F(a) is a field, hence a ring that contains F and a and

F[a] is the smallest ring that contains F and qa, then F[a] C F(a).
Thus, F(a) is a field that contain F[a].

Recall from Lecture Notes 12/7/09,

(1) Frac(R) contains an isomorphic copy of R and

(2) Frac(R) is the smallest field containing [an ismo copy of] R.
Since Frac(F[a]) is the smallest field containing the ring F[a],
and F(a) is “a” field that contains F[a], then Frac(F[a]) “C" F(a).
To show the reverse “containment”, notice that

F(a) is the smallest field that contains F and a while

Frac(F[a]) is “a” field that contains F and a.

Thus, F(a) = Frac(F[a]).

Let E/F be an extension and a € E, then F[a] = @a(F[x]) where
@a:F[x] — F[a] is the evaluation homomorphism.

Proof:
Let @q : F[x] — F[a] be defined by . (f (x)) = f(a) V f(x) € F[x].
Recall @q : F[x] — Fis a homomorphism (Lecture Notes 11/18/09).

If f(x) = co + c1x + Cc2x% + -+ + cax™, for some ¢; € F, then
@a(f (X)) = co + c1a + -+ + cna € @a(F[x]).
Thus @q(f (x)) € F[a] by closure.

(ie. cia’ € Fla] by definition of F[a], hence Eciai € Fla] by closure.)
i=0

s @a(F[x]) € Flal.

To show the reverse containment,

we will show @q(F[x]) is “a” ring that contains F and a,

hence F[a], the smallest ring containing F and aq,

is contained in @q(F[x]).

Let x € F[x]. Then @q(x) = a and @q(x) € @a(F[x]), S0 a € @a(F[x]).

Let b € F, then b = bx? € F[x], and g4(bx°) = b.

So then @q(bx%) € @a(F[x]), hence b € @q(F[x]). Thus F C @a(F[x]).

And so we have F[a] € gq(F[x]).
.. Fla] = @a(F[x]) as desired.



