	Content: Theorem Corollary Theorem Corollary Example Example Example	If $S \subseteq \operatorname{Aut}(E)$ and $ S = n$, then $[E:E^S] \ge n$. If $S \subseteq \operatorname{Aut}(E)$ and $ S = \infty$, then $[E:E^S] = \infty$. If $G \le \operatorname{Aut}(E)$, then $[E:E^G] = G $. $[E:E^{\operatorname{Gal}(E/F)}] = \operatorname{Gal}(E/F) $. If $G = \operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ where α is a primitive 5 th root of unity, then $E^G = \mathbb{Q}$. If $G = \operatorname{Gal}(\mathbb{Q}(\sqrt{5})/\mathbb{Q}) = \{\operatorname{Id}\}$ then $E^G = \mathbb{Q}(\sqrt[3]{2}) \ne 0$
Definition Normal Extension	Example	If $G = \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{\operatorname{Id}\}$, then $E^G = \mathbb{Q}(\sqrt[3]{2}) \neq \mathbb{Q}$.

Theorem If $S \subseteq Aut(E)$ and |S| = n, then $[E:E^S] \ge n$.

Proof: See Lecture Notes 4/7/10

Corollary If $S \subseteq \operatorname{Aut}(E)$ and $|S| = \infty$, then $[E:E^S] = \infty$.

Proof: Homework

Let $n \in \mathbb{N}$. Let $T = {\sigma_1, ..., \sigma_n} \subseteq S$. By part (b), $E^S \subseteq E^T$.

By part (a) E^T and E^S are subfields of E, hence E^S is a subfield of E^T .

If $[E:E^T]$ or $[E^T:E^S]$ is infinite, then $[E:E^S]$ is infinite by Theorem 39 of Extension

Fields Part I. Assume both are finite.

Then by Lecture Notes 3/15/10 (Let K/E be an extension and E/F be an extension. If [K:E] and [E:F] are both finite, then [K:F] = [K:E][E:F].) $[E:E^S] = [E:E^T][E^T:E^S]$.

Since |T| = n, then by Lecture Notes 4/7/10 (If $S \subseteq Aut(E)$ and |S| = n, then $[E:E^S] \ge n$), we have $[E:E^T] \ge n$. And $[E^T:E^S] \ge 1$ as extension field degrees are always ≥ 1 .

Thus $[E:E^S] \ge n, \forall n \in \mathbb{N}$.

 $: [E:E^S] = \infty.$

Theorem If $G \le Aut(E)$, then $[E:E^G] = |G|$.

Proof: Similar argument. See handout; very lengthy.

Corollary $[E:E^{Gal(E/F)}] = |Gal(E/F)|.$

Example If $G = Gal(\mathbb{Q}(\alpha)/\mathbb{Q})$ where α is a primitive 5th root of unity, then $E^G = \mathbb{Q}$.

Proof-

Since $p(x) = x^4 + x^3 + x^2 + x + 1$ has degree 4, and we have shown p is irreducible over \mathbb{Q} , then $\mathbb{Q}(\alpha):\mathbb{Q} = 4$.

And we know $4 = [\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\alpha):E^G][E^G:\mathbb{Q}].$

In Lecture Notes 4/5/10, we found that $Aut(E) \cong \mathbb{Z}_4$,

hence $|\operatorname{Aut}(E)| = |\operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})| = 4$.

Since $|Gal(\mathbb{Q}(\alpha)/\mathbb{Q})| = 4$, then $[\mathbb{Q}(\alpha):E^G)] = [\mathbb{Q}(\alpha):\mathbb{Q}(\alpha)^{Gal(\mathbb{Q}(\alpha)/\mathbb{Q})}] = 4$, by

the above corollary.

So $[\mathbb{Q}(\alpha)^{Gal(\mathbb{Q}(\alpha)/\mathbb{Q})}; \mathbb{Q})] = 1$, hence $\mathbb{Q}(\alpha)^{Gal(\mathbb{Q}(\alpha)/\mathbb{Q})} = \mathbb{Q}$.

If $G = Gal(\mathbb{Q}(\sqrt{5})/\mathbb{Q}) \cong \mathbb{Z}_2$, and $E = \mathbb{Q}(\sqrt{5})$, then $E^G = \mathbb{Q}$. **Example**

Proof:

 $2 = [\mathbb{Q}(\sqrt{5}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{5}):E^G][E^G:\mathbb{Q}].$

And $Gal(\mathbb{Q}(\sqrt{5})/\mathbb{Q}) \cong \mathbb{Z}_2$ gives us that $|Gal(\mathbb{Q}(\sqrt{5})/\mathbb{Q})| = 2$. Thus $2 = |Gal(\mathbb{Q}(\sqrt{5})/\mathbb{Q})| = [\mathbb{Q}(\sqrt{5}):E^G]$ by above corollary.

So $[E^G: \mathbb{Q})$] = 1, hence $E^G = \mathbb{Q}$. $\mathbb{Q} \subset \mathbb{Q}(\sqrt{5})$.

If $G = Gal(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{Id\}$ and $E = \mathbb{Q}(\sqrt[3]{2})$, then $E^G = \mathbb{Q}(\sqrt[3]{2})^G \neq \mathbb{Q}$. Example

Thus $[\mathbb{Q}(\sqrt[3]{2}):E^G] = 1$ by above corollary.

So $3 = [\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = [\mathbb{Q}(\sqrt[3]{2}):E^G][E^G:\mathbb{Q}] \Rightarrow [E^G:\mathbb{Q}] \neq 1$, hence $E^G \neq \mathbb{Q}$.

 \therefore \mathbb{Q} is not normal in $\mathbb{Q}(\sqrt[3]{2})$.

Definition Let *E*/*F* be an extension. We say that *E* is a *normal extension* of *F* if

 $[E:F] < \infty$ and *F* is the fixed field of Gal (E/F). We write $F \triangleleft E$.