- **1.** Check the properties of the following Cantor type sets:
- **(a)** Divide the interval [0, 1] into 5 equal subintervals and remove the 2nd and 4th of them. Repeat this process with the remaining 3 intervals and so on...

The Cantor Set is closed, compact, perfect and is uncountable. We will check for these properties in the set described above.

Call this set
$$C_1$$
. Then $C_1 = [0, 1] \setminus \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{(1/2)(5^n-1)} \left(\frac{2k-1}{5^n}, \frac{2k}{5^n} \right)$.

(i) C_1 is closed.

Proof:

If we take
$$X = [0, 1]$$
, then $C_1 = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{(1/2)(5^n - 1)} \left(\frac{2k-1}{5^n}, \frac{2k}{5^n} \right)$.

Since $\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{(1/2)(5^n-1)} \left(\frac{2k-1}{5^n}, \frac{2k}{5^n}\right)$ is a union of open sets, then C_1 is closed.

(ii) C_1 is compact.

Proof:

We first note that C_1 is bounded as $\forall x \in C_1, C_1 \subset N_1(x)$.

Thus since $C_1 \subset \mathbb{R}$, C_1 is closed, and C_1 is bounded, then C_1 is compact by Theorem 2.41 (If a set E in \mathbb{R}^n has one of the following 3 properties, is has the other 2: (a) E is closed and bounded; (b) E is compact; Every infinte subset of E has a limit point in E.)

(iii) C_1 is perfect.

Proof:

We can show that $x \in C_1$ can be represented in base 5 where $x = 0.a_1a_2...a_ka_{k+1}...$ and each $a_i \in \{0, 2, 4\}$ (similar to proof in lecture notes 10/13/10). Let $0 < \varepsilon < 1$ be arbitrary, but fixed. Then $\exists k \in \mathbb{N}$ such that $1/5^k < \varepsilon$. Let $x \in C_1$, then $x = 0.a_1a_2...a_ka_{k+1}...$.

Choose
$$x_{\varepsilon} = 0.a_1 a_2 ... a_k b_{k+1} a_{k+2} ...$$
 where $b_{k+1} = \begin{cases} 0 \text{ if } a_{k+1} \neq 0 \\ 2 \text{ if } a_{k+1} = 0 \end{cases}$.

Then $0 < d(x, x_{\varepsilon}) < 1/5^{k+1} < 1/5^k < \varepsilon$.

$$C_1 \cap [(x - \varepsilon, x + \varepsilon) \setminus \{x\}] \neq \emptyset$$
, hence $C_1' = C_1$. Thus C_1 is perfect.

(iv) C_1 is uncountable.

Proof:

Since elements of C_1 can be represented in base 5 using only the digits 0, 2, and 4, then C_1 is isomorphic to the set of all sequences formed by the digits 0, 2, and 4. Since the set of all sequences formed by using the digits 0 and 2 are a subset of C_1 and we have shown this set is uncountable, then C_1 is uncountable.

1. (b) Again, divide the interval [0, 1] into 5 equal subintervals, but now remove the 2nd, 3rd, and 4th subintervals.

Proof:

Call this set
$$C_2$$
. Then $C_2 = [0, 1] \setminus \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{5^{n-1}-1} \left(\frac{5k+1}{5^n}, \frac{5k+4}{5^n} \right)$

The remainder of the proof is parallel to part (a) above, and the results are the same.

- **2.** Read and understand the proof of Theorem 2.28.
- (i) **Theorem 2.28** Let *E* be a nonempty set of real numbers which is bounded above. Let $y = \sup E$. Then $y \in \overline{E}$. Hence $y \in E$ if *E* is closed.

Proof:

If $y \in E$, then $y \in E \cup E' = \overline{E}$. Suppose $y \notin E$. Let $\varepsilon > 0$. Then $y = \sup E \Rightarrow \exists x \in E$ such that $y - \varepsilon < x < y$. So then $N_{\varepsilon}(y)^* \cap E \neq \emptyset$. \therefore y is a limit point of E. \therefore In either case, $y \in \overline{E}$.

(ii) Let $S \subseteq \mathbb{R}$ be bounded above. Suppose that sup $S = \alpha \notin S$. Show that α is a limit point of S.

Proof:

Let r > 0. Then $\alpha \notin S \Rightarrow \exists x \in S$ such that $\alpha - r < x < \alpha$. Thus $N_{\varepsilon}(x)^* \cap S \neq \emptyset$.

3. Read the definition of convex sets from page 31.

Definition We call a set $E \subset \mathbb{R}^n$ convex if $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in E$ whenever $\mathbf{x}, \mathbf{y} \in E$ and $0 < \lambda < 1$.

(a) Show that in \mathbb{R}^n , $N_r(\mathbf{x})$ and $N_r(\mathbf{x})$ are convex.

Proof:

Let $\mathbf{w}, \mathbf{z} \in N_r(\mathbf{x})$ and let $0 < \lambda < 1$. Then $|\mathbf{w} - \mathbf{x}| < r$ and $|\mathbf{z} - \mathbf{x}| < r$. Then $d(\lambda \mathbf{w} + (1 - \lambda)\mathbf{z}, \mathbf{x}) = |\lambda \mathbf{w} + (1 - \lambda)\mathbf{z} - \mathbf{x}| = |\lambda(\mathbf{w} - \mathbf{x}) + (1 - \lambda)(\mathbf{z} - \mathbf{x})|$. By the Theorem 1.37 (e), we have $|\lambda(\mathbf{w} - \mathbf{x}) + (1 - \lambda)(\mathbf{z} - \mathbf{x})| \le |\lambda(\mathbf{w} - \mathbf{x})| + |(1 - \lambda)(\mathbf{z} - \mathbf{x})|$ $= \lambda |(\mathbf{w} - \mathbf{x})| + (1 - \lambda)|(\mathbf{z} - \mathbf{x})| < \lambda r + (1 - \lambda)r = r$. $\therefore \lambda \mathbf{w} + (1 - \lambda)\mathbf{z} \in N_r(\mathbf{x})$, hence $N_r(\mathbf{x})$ is convex.

 $\overline{N_r(x)}$ is convex can be proved in the same way, just replace < with \leq .

3. (b) Show that if $S \subset \mathbb{R}^n$ is convex, then \overline{S} is convex, too.

Proof:

Consider $\mathbf{x}, \mathbf{y} \in \overline{S}$. If $\mathbf{x} \in \overline{S}$, then either $\mathbf{x} \in S$ or $\mathbf{x} \in S'$.

In either case, $\forall r > 0$, $N_r(\mathbf{x}) \cap S \neq \emptyset$ and $N_r(\mathbf{y}) \cap S \neq \emptyset$.

Let r > 0, let $0 < r' < \min\{r/(2\lambda), r/[2(1 - \lambda)]\}$. Let $\mathbf{p} \in N_{r'}(\mathbf{x})$, and let $\mathbf{q} \in N_{r'}(\mathbf{y})$. Since S is convex, we have $\lambda \mathbf{p} + (1 - \lambda)\mathbf{q} \in S$.

Note that $|\mathbf{x} - \mathbf{p}| < r' \Rightarrow |\lambda(\mathbf{x} - \mathbf{p})| = \lambda|\mathbf{x} - \mathbf{p}| < \lambda \bullet (r/(2\lambda)) = r/2$ and similarly,

$$|\mathbf{y} - \mathbf{q}| < r' \Rightarrow |(1 - \lambda)(\mathbf{y} - \mathbf{q})| = (1 - \lambda)|\mathbf{y} - \mathbf{q}| < (1 - \lambda) \bullet (r/[2(1 - \lambda)]) = r/2 \text{ . So then}$$

$$|\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} + (\lambda \mathbf{p} - (1 - \lambda)\mathbf{q})| = |\lambda(\mathbf{x} - \mathbf{p}) + (1 - \lambda)(\mathbf{y} - \mathbf{q})|$$

$$\leq |\lambda(\mathbf{x} - \mathbf{p})| + |(1 - \lambda)(\mathbf{y} - \mathbf{q})|$$

$$< (1/2)r + (1/2)r = r.$$

Thus $\forall r > 0$, $N_r(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \cap S \neq \emptyset$. So then $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in S$ or $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in S'$. $\therefore \lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in \overline{S}$.

(c) Is *S* convex if we suppose that \overline{S} is convex? No.

Proof:

Consider $S = [0, 2] \setminus \{1\}$.

Then $\overline{S} = [0, 2]$ is convex, but $(1/2) \cdot 0 + (1/2) \cdot 2 = 1 \notin S$. Thus S is not convex.

- **4.** Solve exercises 17 and 18 from page 44.
- **(17)** Let E be the set of all $x \in [0, 1]$ whose decimal expansion contains only the digits 4 and 7. Is E countable? Is E dense in [0, 1]? Is E compact: Is E perfect? Is E countable? No.

Proof:

Let $x = 0.a_1a_2a_3...a_n...$ be the decimal expansion of $x \in E$ where $a_i \in \{4, 7\}$. Assume E is countable. Then we can list the members of E as follows:

 $x_1 = 0.a_{11}a_{12}a_{13}...a_{1n}...; x_2 = 0.a_{21}a_{22}a_{23}...a_{2n}...; x_n = 0.a_{n1}a_{n2}a_{n3}...a_{nn}...$

We will construct a decimal expansion, $b = 0.b_1b_2b_3...b_n...$, not in the list:

- (1) If $a_{11} = 4$, then $b_1 = 7$, else $b_1 = 4$; (2) If $a_{22} = 4$, then $b_2 = 7$, else $b_2 = 4$;
- (n) If $a_{nn} = 4$, then $b_n = 7$, else $b_n = 4$. Thus, b differs from every element in the table in at least one digit. $\therefore b \notin E$. $\therefore E$ is uncountable.

Is *E* dense in [0, 1]? No.

Proof:

 $0.48 \in [0, 1]$, but $N_{0.001}(x) \cap E = \emptyset$ as $0.48 - 0.4 \overline{7} = 0.0 \overline{2}$ and $0.7 \overline{4} - 0.48 = 0.26 \overline{4}$. Thus, 0.48 is not a limit point of E, but $0.48 \in [0, 1]$. $\therefore E$ is not dense.

Is *E* compact? Yes.

Proof:

We will show *E* is closed and bounded, hence compact.

E is bounded as $\forall x \in E$, d(x, 1/2) < 1. To show *E* is closed, we will assume it is not. Then $\exists p$, a limit point of *E* such that $p \notin E$. Let $p = 0.p_1p_2p_3...p_n$... be the decimal expansion of p. Since $p \notin E$, then there is a smallest index p such that $p \neq 1$ and $p \neq 1$. This gives us 3 cases, (1) $p \in 1$ (0, 1, 2, 3), (2) $p \in 1$ (3) $p \in 1$ (8, 9).

Case (1). Assume $p_n \in \{0, 1, 2, 3\}$ and let m be the smallest index such that $p_m = 7$, if such an m exists (if no such m exists, then $0 \le 0.p_1p_2p_3...p_n... < 0. <math>\overline{4}$). Thus,

 $0.p_1p_2p_3...p_{m-1}4p_{m+1}...p_{n-1}\ \overline{7} < 0.p_1p_2p_3...p_{m-1}7p_{m+1}...p_{n-1}p_n... = p < 0.p_1p_2p_3...p_{n-1}\ \overline{4}...$ Both are neighborhoods of p that contain no element of E.

Case (2) Assume $p_n \in \{5, 6\}$. Then $0.p_1p_2p_3...p_{n-1}4\ \overline{7} < 0.p_1p_2p_3...p_n... < 0.p_1p_2p_3...p_{n-1}7\ \overline{4}...$. Again, we have a neighborhood of p that contains no element of E.

Case (3) Assume $p_n \in \{8, 9\}$ and let t = the smallest index t such that p_t = 7, if such a t exists (if no such digit exists, then 0. $\overline{7} < 0.p_1p_2p_3...p_n... \le 1$). Thus,

 $0.p_1p_2p_3...p_{n-1}\ \overline{7} < 0.p_1p_2p_3...p_{m-1}4p_{m+1}...p_{n-1}p_n... = p < 0.p_1p_2p_3...p_{m-1}7p_{m+1}...p_{n-1}\ \overline{4}...$ Again, a neighborhood of p that contains no element of E.

- \therefore p is not a limit point of E, contrary to our assumption.
- \therefore If *p* is a limit point of *E*, then $p \in E$. \therefore *E* is closed. \therefore *E* is compact.

Is *E* perfect? Yes.

Proof:

Let $p \in E$ where the decimal expansion of p is $0.p_1p_2p_3...p_n...$

Let r > 0. Then $\exists n$ such that $3/10^n < r$. Let $p' = 0.p_1p_2p_3...p_nb_{n+1}...$ where $b_{n+1} = 4$ if $p_{n+1} = 7$, and $b_{n+1} = 7$ if $p_{n+1} = 4$. Then $p' \in N_r(p)$, $p' \in E$ and $p' \neq p$.

- \therefore p is a limit point of E. \therefore Every point of E is a limit point of E.
- \therefore Since *E* is also closed, a shown above, then *E* is perfect.

(18) Is there a nonempty perfect set in \mathbb{R}^1 which contains no rational number? Yes.

Proof:

Consider the set *E* constructed in the following manner.

First take a closed interval in \mathbb{R} with irrational endpoints call it $A = [\hat{a}, \hat{b}]$.

Since \mathbb{Q} is countable we can let $F = \{q_1, q_2, ..., q_n, ...\}$ where F is a list of all the rationals between \hat{a} and \hat{b} .

Let $A_1 = A \setminus (a_1, b_1)$ where $\hat{a} < a_1 < q_1 < b_1 < \hat{b}$ for $a_1, b_1 \in \mathbb{Q}^c$,

Define A_n as follows:

If q_n was already removed (i.e. contained in an interval previously deleted), let $A_n = A_{n-1}$.

If q_n was not already removed, let $A_n = A_{n-1} \setminus (a_n, b_n)$ where $\hat{a} < a_n < q_n < b_n < \hat{b}$,

 $a_n, b_n \in \mathbb{Q}^c, q_n - a_n < \min_{1 \le i \le n} = \{|q_n - b_i|\}, \text{ and } q_n - b_n < \min_{1 \le i \le n} = \{|q_n - a_i|\}.$

Let $E = \bigcap_{n \in \mathbb{N}} A_n$. By construction E contains no rational number.

Since each A_n is closed then E is closed.

To show *E* contains all its limit points, let $p \in E$ and let $\varepsilon > 0$.

Then $\exists q_i \in \mathbb{Q}$ such that $p < q_i < p + \varepsilon$. Then $\exists (a_i, b_i)$ such that $q_i \in (a_i, b_i)$.

Since $p \in E$ it must be the case that $p < a_i < q_i$.

Since $p < a_i < p + \varepsilon$, then p is a limit point of E. \therefore E is perfect.

- **6.** Solve exercises 22 and 23 from page 45.
- (22) A metric space is called separable if it contains a countable dense subset. Show that \mathbb{R}^n is separable. **Hint**: Consider the set of points which have only rational coordinates.

Proof:

Let $n \in \mathbb{N}$. We will show \mathbb{Q}^n is a countable dense subset of \mathbb{R}^n .

Clearly $\mathbb{Q}^n \subset \mathbb{R}^n$.

We know \mathbb{Q} is countable, and by Theorem 2.13 we have that \mathbb{Q}^n is countable as \mathbb{Q}^n is a finite cross product of \mathbb{Q} by itself n times.

To show \mathbb{Q}^n is dense in \mathbb{R}^n , we let $\mathbf{p} \in \mathbb{R}^n$ such that $\mathbf{p} \notin \mathbb{Q}^n$.

We will show **p** is a limit point of \mathbb{Q}^n .

Let $\varepsilon > 0$. Then for every i = 1, 2, ..., n, $\exists q_i \in \mathbb{Q}$ such that $0 < p_i - q_i < \varepsilon / \sqrt{n}$.

Thus
$$|\mathbf{p} - \mathbf{q}| = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2} < \varepsilon$$
. $\therefore \mathbf{q} = (q_1, q_2, ..., q_n) \in \mathbb{Q}^n$ and $\mathbf{q} \in N_{\varepsilon}(\mathbf{p})$.

- \therefore \mathbb{Q}^n is dense in \mathbb{R}^n , hence, \mathbb{R}^n is separable.
- (23) A collection $\{V_{\alpha}\}$ of open subsets of X is said to be a *base* for X if the following is true: For every $x \in X$ and every open set $G \subset X$ such that $x \in G$, we have $x \in V_{\alpha} \subset G$ for some α . In other words, every open set in X is the union of a subcollection of $\{V_{\alpha}\}$.

Prove that every separable metric space has a countable base.

Hint: Take all neighborhoods with rational radius and center in some countable dense subset of *X*.

Proof:

Let (*X*, *d*) be a separable metric space.

Then $\exists Y$, a countable, dense subset of X.

Let $\{V_{\alpha}\} = \{N_q(y) \mid y \in Y \text{ and } q \in \mathbb{Q}^+\}.$

We will show $\{V_{\alpha}\}$ is a countable base for X.

Let $x \in X$. Let G be an open subset of X such that $x \in G$.

Then $\exists r > 0$ such that $N_r(x) \subset G$, as G is open.

As *Y* is dense in *X*, then every point of *X* is a limit point of *Y* or a point of *Y* or both.

Thus $N_{(1/2)r}(x) \cap Y \neq \emptyset$, hence $\exists y \in N_{(1/2)r}(x) \cap Y$.

Recall that for any metric $d, d: X \times X \to \mathbb{R}^+ \cup \{0\}$, so then $\forall x, y \in X, d(x, y) \in \mathbb{R}^+ \cup \{0\}$.

We know \mathbb{Q}^+ is dense in $\mathbb{R}^+ \cup \{0\}$, hence $\exists q \in \mathbb{Q}^+$ such that d(x, y) < q < (1/2)r.

Let $z \in N_q(y)$. Then d(x, z) < d(x, y) + d(z, y) < (1/2)r + q < (1/2)r + (1/2)r = r.

Thus $x \in N_a(y) \subset N_r(x) \subset G$.

Hence $\{V_{\alpha}\}$ is a base for X.

To show $\{V_{\alpha}\}$ is countable, note that

 $\varphi: \{V_{\alpha}\} \to \mathbb{Q} \times Y \text{ defined by } \varphi(N_q(y)) = (q, y) \text{ is a bijection.}$

Since $\mathbb{Q} \times Y$ is a finite product of countable sets, then $\mathbb{Q} \times Y$, hence $\{V_{\alpha}\}$ is countable.

:. Every separable metric space has a countable base.

- **5.** Solve exercises 27 and 28 from page 45.
- (27) Define a point p in a metric space X to be a *condensation point* of a set $E \subseteq X$ if every neighborhood of p contains uncountably many points of E.

Suppose $E \subset \mathbb{R}^n$, E is uncountable, and let P be the set of all condensation points of E.

Prove that *P* is perfect and that at most countably many points of *E* are not in *P*. In other words, show that $P^c \cap E$ is at most countable.

Hint: Let $\{V_n\}$ be a countable base of \mathbb{R}^n , let W be the union of those V_n for which $E \cap V_n$ is at most countable, and show that $P = W^c$.

Proof:

Let $E \subset \mathbb{R}^n$ such that E is uncountable, and let P be the set of all condensation points of E. To show P is closed, let $x \in P$ ' and let r > 0. Then $\exists y \in N_r(x)^* \cap P$. Since $y \in P$, then $N_{r-d(x,y)}(y)$ is uncountable, hence $N_{r-d(x,y)}(y) \subset N_r(x) \Rightarrow N_r(x)$ is uncountable. Thus $x \in P$. \therefore P is closed.

To show every point of P is a limit point of P, let $p \in P$ and suppose $p \notin P'$. Then $\exists r > 0$ such that $N_r(p) \cap P = \{p\}$.

We will show that $N_r(p) \cap E$ is the countable union of countable sets, hence $p \notin P$, contrary to our assumption.

Let $y \in N_r(p)^* \cap E$. Thus, $y \notin P$.

Let $\{V_n\}$ be a countable base for \mathbb{R}^n (we know $\{V_n\}$ exists by #22, 23 above).

So then $\exists n$ such that $y \in V_n \subset (N_r(p)^* \cap E)$, since $N_r(p)^* \cap E$ is open.

Notice that $V_n \cap P = \emptyset$, hence V_n is at most countable.

And because y was chosen arbitrarily, then $(N_r(p)^* \cap E) \subset \bigcup_{n=1}^{\infty} V_n$, a countable union of countable sets. Thus $N_r(p) \cap E$ is countable, and we have our contradiction. \therefore Every point of P is a limit point of P, hence P is perfect.

To show that at most countably many points of E are not in P, let $W = \bigcup \{V_{n_i} \subseteq \{V_n\} \mid V_{n_i} \cap E \text{ is at most countable}\}.$

We will show $W^c = P$.

Let $x \in P$, then $\forall r > 0$, $N_r(x)$ contains uncountably many points of E.

Thus $\forall n_i, x \notin V_{n_i} \in W$, thus $x \notin W$, hence $x \in W^c$.

Let $y \in W^c$. Let r > 0. Then $(N_r(y) \cap E) \not\subset V_{n_i} \forall n_i$. Thus, $N_r(y) \cap E$ contains uncountably many points. Since r was chosen arbitrarily, then $y \in P$. $\therefore P = W^c$. Since W is a countable union of countable sets, then W is at most countable.

(28) Prove that every closed set in a separable metric space is the union of a (possibly empty) perfect set and a set which is at most countable. (Corollary: Every countable closed set in \mathbb{R}^n has isolated points.) **Hint**: Use Exercise 27.

Proof:

Let (X, d) be a separable metric space, and let $E \subset X$ be closed.

If *E* is at most countable, then $E = E \cup \emptyset$ which is the union of a perfect set and a set which is at most countable. Assume *E* is uncountable.

Let *P* be the set of all condensation points of *E*.

Since *X* is separable, then, by Exercise #27, *P* is perfect and $P^c \cap E$ is at most countable. Since *P* is closed, then $P \subseteq E$. Also $P^c \cap E = E \setminus P$ is at most countable.

- $E = P \cup (E \setminus P)$, which is a union of a perfect set and a set which is at most countable.
- **7.** Let $S \subseteq \mathbb{R}$. Prove that the set of isolated points of *S* is at most countable.

Proof:

Let $E \subseteq S$ such that E is a set of isolated points.

If *E* is finite, then *E* is countable. Assume *E* is infinite.

Since *E* is a set of isolated points then for each $x \in E$, $\exists r_x > 0$ such that $N_{r_x}(x) \cap E = \{x\}$.

Let $t_x = (1/4) r_x$. We will show $\{N_{t_x}(x)\}_{x \in E}$ are disjoint.

Let $x \in E$. Let $y \in N_{t_x}(x)$. Let $z \in E$ such that $d(x, z) \ge r_x$.

Then $\exists r_z > 0$ such that $N_{r_z}(z) \cap E = \{z\}$. Let $r = \max \{r_x, r_z\}$.

Thus $(1/4)r_z = t_z \le t_x = (1/4)r_x$.

Then $r \le d(x, z) \le d(x, y) + d(y, z) \le (1/4)r_x + d(y, z) \le (1/4)r + d(y, z)$.

Thus, $(3/4)r_z \le (3/4)r \le d(y, z)$, hence $y \notin N_{t_z}(z)$.

And we have that $\{N_{t_x}(x)\}_{x\in E}$ are disjoint.

Now, by the density property, $\exists p_x \in \mathbb{Q}$ such that $x < p_x < x + t_x$. Thus $p_x \in N_{t_x}(x)$.

Define $f: E \to \mathbb{Q}$ by $f(x) = p_x$.

To show f is well-defined and 1-1, we let $x, y \in E$ such that f(x) = f(y).

Then we have $x = y \Leftrightarrow f(x) = f(y)$ $\Leftrightarrow p_x = p_y$

$$\Leftrightarrow N_{t_x}(x) \cap N_{t_y}(y) \neq \emptyset$$

 $\Leftrightarrow N_{t_x}(x) = N_{t_y}(y).$

Thus, *f* is 1-1.

So then card $E \leq \text{card } \mathbb{Q}$.

 \therefore E is countable.

8. Let $S \subseteq \mathbb{R}$ such that every $x \in S$ has a neighborhood which intersects S in at most countably many points. Show that S is at most countable.

Proof:

We will first construct a set of neighborhoods, D, each neighborhood containing a countable number of points, that covers S. In order to show D, or a subset of D that still covers S (call it D_1 if we need it), is countable we will find a countable set, A, for which we can define a function $f: A \rightarrow D$ (or D_1) which is onto. This will give us that D (or D_1) is countable, hence S will be a countable union of countable sets.

Let $x \in S$.

By hypothesis, $\exists r > 0$ such that $\mathcal{N}_x = N_r(x) \cap S$ is at most countable.

Let $D = \{ \mathcal{N}_x | x \in S \}$. This is an open cover of S.

By the density property,

 $\exists q_x \in \mathbb{Q}$ such that $x < q_x < x + r/4$ and $\exists r_{q_x} \in \mathbb{Q}$ such that $d(x, q_x) < r_{q_x} < r/4$.

Let $\mathcal{N}_{q_x} = N_{r_{q_x}}(q_x) \cap S$. Thus $x \in \mathcal{N}_{q_x} \subset \mathcal{N}_x$, and \mathcal{N}_{q_x} is at most countable.

Let $A = \{ \mathcal{N}_{q_x} \mid x \in S \}$. Note that A is countable.

Here, we would like to define $f: A \to D$ by $f(\mathcal{N}_{q_x}) = \mathcal{N}_x$,

however, the map is not a well-defined function as it is possible that we could have \mathcal{N}_{q_x} and $\mathcal{N}_{q_y} \in A$ such that $\mathcal{N}_{q_x} = \mathcal{N}_{q_y}$ but $f(\mathcal{N}_{q_x}) \neq f(\mathcal{N}_{q_y})$.

This would occur in the event that $\exists y \in S$ such that $y \in \mathcal{N}_{q_x}$ and $\mathcal{N}_x \neq \mathcal{N}_y$ (see diagram). So then we must reduce D in order to prevent this occurrence.

If $\exists y \in S$ such that $y \in \mathcal{N}_{q_x}$ and $\mathcal{N}_x \neq \mathcal{N}_y$, we can reduce D by eliminating \mathcal{N}_y as the remaining neighborhoods in D still cover S. Call this reduced cover D_1 .

Now we can define $f: A \to D_1$ by $f(\mathcal{N}_{q_x}) = \mathcal{N}_x$.

This map is well-defined and clearly onto.

 \therefore D_1 is a countable open cover of S and each $\mathcal{N}_x \in D_1$ is countable.

Since $S = \bigcup D_1$, then S is a countable union of countable elements, hence countable.

This diagram is a genralization of the technique used in this problem to $S \subseteq \mathbb{R}^2$.

9. Show that $(0, 1) \times (0, 1) \sim (0, 1)$.

Proof:

We will show there is an injective function $f:(0,1)\times(0,1)\to(0,1)$ and an injective function $g:(0,1)\to(0,1)\times(0,1)$, and thus, by the Schroder-Bernstein Theorem, card $((0,1)\times(0,1))=$ card ((0,1)).

Let $x = 0.x_1x_2...$, and $y = 0.y_1y_2...$ be unique decimal expansions of $x, y \in (0, 1)$.

Define $f: (0, 1) \times (0, 1) \rightarrow (0, 1)$ by $f((x, y)) = f((0.x_1x_2..., 0.y_1y_2...)) = 0.x_1y_1x_2y_2...$. To show f is well-defined and 1-1, we let $(a, b), (c, d) \in (0, 1) \times (0, 1)$ such that f((a, b) = f((c, d))).

Then we have
$$f((a, b) = f((c, d))$$

 $\Leftrightarrow 0.a_1b_1a_2b_2... = 0.c_1d_1c_2d_2...$
 $\Leftrightarrow a_1 = c_1, b_1 = d_1, a_2 = c_2, b_2 = d_2, ...$
 $\Leftrightarrow (a, b) = (c, d).$

Thus *f* is well-defined and 1-1,

Define $g: (0, 1) \rightarrow (0, 1) \times (0, 1)$ by g(x) = (x, 0.5). g is clearly 1-1. \therefore card $((0, 1) \times (0, 1)) = \text{card }((0, 1))$, hence $(0, 1) \times (0, 1) \sim (0, 1)$.