HW 7, Practice Problems, Week #7, Assigned Friday, 10/15/10

1. Check the properties of the following Cantor type sets:
(a) Divide the interval [0, 1] into 5 equal subintervals and remove the 2nd and 4th
of them. Repeat this process with the remaining 3 intervals and so on...

The Cantor Set is closed, compact, perfect and is uncountable. We will check for
these properties in the set described above.

Call this set C1. Then C1 = [0, 1] \Un 1U(l/z)(s 1)(

2k -1 Zk)
5" T 5")

(i) Ciisclosed.
Proof:

If we take X = [0, 1], then C1 = U U(l/z)(s 1)(

2k -1 Zk)
’Sn-

2k -1 2k
Since U U(m)(5 ])( T ) is a union of open sets, then C; is closed.

(ii) C1 is compact.

Proof:

We first note that C1 is bounded as V x € (1, C1 C N1(x).

Thus since C1 CR, C1 is closed, and €1 is bounded, then C; is compact by Theorem
2.41 (If a set E in R has one of the following 3 properties, is has the other 2: (a) E is closed and
bounded; (b) E is compact; Every infinte subset of E has a limit point in E.)

(iii) C1 is perfect.

Proof:

We can show that x € €1 can be represented in base 5 where

x = 0.a102...akax+1... and each a; € {0, 2, 4} (similar to proof in lecture notes 10/13/10).
Let 0 < € < 1 be arbitrary, but fixed. Then 3 k € N such that 1/5k<e.

Let x € C1, then x = 0.a1az...arQk+1... .

0ifa,, =0

Choose x¢ = 0.a1az...akbk+10k+2... where b, = {2 ifa,_, =0
Then 0 < d(x, x¢) <1/5k1<1/5k<e.

N [(x-¢, x+¢)\{x}] #F, hence C1' = C1. Thus C; is perfect.
(iv) Ciisuncountable.
Proof:
Since elements of C1 can be represented in base 5 using only the digits 0, 2, and 4,
then (i is isomorphic to the set of all sequences formed by the digits 0, 2, and 4.
Since the set of all sequences formed by using the digits 0 and 2 are a subset of C1
and we have shown this set is uncountable, then C; is uncountable.

1. (b) Again, divide the interval [0, 1] into 5 equal subintervals, but now remove the
2nd, 3rd, and 4th subintervals.
Proof:

Call this set C2. Then C2 =10, 1] \Un 1Uk 1_1(

Sk+1 Sk+ 4)
5" 75
The remainder of the proof is parallel to part (a) above, and the results are the same.
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2. Read and understand the proof of Theorem 2.28.
(i) Theorem 2.28 Let E be a nonempty set of real numbers which is bounded
above. Lety=sup E. Theny € E. Hencey € E if E is closed.

Proof:

IfyEeE thenyEEUE'= E. Supposey&E. Lete>0. Theny=sup E=3IxEE
such that y-e<x<y. Sothen Ne(y)* N E # . .. yisalimit point of E.

. In either case, y€ E.

(ii) Let SC R be bounded above. Suppose that sup S = o & S. Show that o is a limit
point of S.

Proof:
Letr>0. Thena & S=3xE Ssuchthato - r<x<a. Thus Ne(x)* N S = J.

3. Read the definition of convex sets from page 31.
Definition We call aset EC R» convex if Ax + (1 - L)y € E wheneverx,y EEand 0 <A < 1.

(a) Show thatin R”, Nx(x) and N,(x) are convex.

Proof:

Letw,zE N/ (x)andlet0 <A <1. Then|w-x|<rand|z-Xx|<r

Thend(Aw + (1 -A)z, x) = |Aw + (1 -A)z-Xx| = |A(W-X) + (1 - A\)(z - X)|.

By the Theorem 1.37 (e), we have [A\(w-x) + (1 -A)(z-X)| < |M(w-X)| + |[(1 -A\)(z-X)|
=AMW-x)|+(1-N)|(z-x)|<Ar+(1-Nr=r.

. Aw + (1 - A)z € N(x), hence N/(x) is convex.

N _(x) is convex can be proved in the same way, just replace < with <.

3. (b) Show thatif SC Rris convex, then § is convex, too.

Proof:
Considerx,y€ S. Ifx€ S, theneitherxESorxes".
In either case, Vr>0,N(x) NS#Jand N(y) N S # D.
Letr>0,let 0 <r'<min{r/(2\), r/[2(1 - A)]}. Letp € Nr(x), and let q € N+ (y).
Since S'is convex, we have Ap + (1 -A)q ES.
Note that |[x - p| <r'= |A(x-p)| = AMx-p| <A (r/(2N)) =r/2 and similarly,
ly-q|<r'=|1-My-ql=0-Mly-q| <(1-2)e(/[2(1-N)])=r/2. Sothen
[Ax+(1-Ny+(p-(1-Mq)| =[rMx-p)+(1-A)(y-q)
< Mx-p)l+1(1-A)(y-q)l
<(1/2)r+(1/2)r=r.
ThusVr>0,N(Ax+ (1-AN)y)NS#J.
SothenAx+ (1-A)yESorix+(1-A)y €S".
LA+ (1-NyE S.

(c) Is S convex if we suppose that S is convex? No.

Proof:
Consider S =0, 2] \ {1}.
Then S =10, 2] is convex, but (1/2) e 0+ (1/2) » 2=1¢S. Thus S is not convex.
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4. Solve exercises 17 and 18 from page 44.

(17) Let E be the set of all x € [0, 1] whose decimal expansion contains only the
digits 4 and 7. Is E countable? Is E dense in [0, 1]? Is E compact: Is E perfect?
Is E countable? No.

Proof:

Let x = 0.a1a2a3...a,... be the decimal expansion of x € E where a; € {4, 7}.
Assume E is countable. Then we can list the members of E as follows:

X1 = 0.(11161126113...611”...; X2 = 0.612161226123...612n...; Xn = 0.an1an2an3...ann...

We will construct a decimal expansion, b = 0.b1b2b3...by..., not in the list:

(1) Ifai1=4,then b1 =7, else b1 =4; (2) If azz =4, then b2 =7, else bz = 4;

(n) If an, = 4, then b, =7, else b, = 4. Thus, b differs from every element in the table
in at least one digit. .. b&E. .. Eisuncountable.

Is E dense in [0, 1]? No.

Proof: 3 3 3 3
0.48 €0, 1], but No.oo1(x) NE=TJas0.48-0.4 7=0.0 2 and 0.7 4 - 0.48 = 0.26 4.
Thus, 0.48 is not a limit point of E, but 0.48 € [0, 1]. .. Eis not dense.

Is E compact? Yes.

Proof:

We will show E is closed and bounded, hence compact.

Eisbounded as V xE E, d(x, 1/2) < 1. To show E is closed, we will assume it is not.
Then 3 p, a limit point of E such that p & E. Let p = 0.p1p2p3...pn... be the decimal
expansion of p. Since p & E, then there is a smallest index n such that p, # 4 and pn # 7.
This gives us 3 cases, (1) pn €{0, 1, 2, 3}, (2) pn € {5, 6}, and (3) p» € {8, 9}.

Case (1). Assume p, €{0, 1, 2, 3} and let m be the smallest index such that p, = 7, if
such an m exists (if no such m exists, then 0 < 0.p1pzps...pn... < 0. 4). Thus,
0.p1p2p3...pm-14pm+1...pn-1 7 < O.plpng...pm_17pm+1...pn_lpn,__ =p < 0.p1p2p3...pn_1 4...
Both are neighborhoods of p that contain no element of E.

Case (2) Assume p, € {5, 6}. Then 0.p1pzp3..pn-14 7 < 0.p1p2p3..Pne < 0.p1P2P3Pn-17 4 ...
Again, we have a neighborhood of p that contains no element of E.

Case (3) Assume p, € {8, 9} and let t = the smallest index t such that p; =7, ifsucha ¢t
exists (if no such digit exists, then 0. 7 < 0.p1p2p3...pn... < 1). Thus,

0.p1p2p3...pn-1 7 < 0.p1pzp3...pm_14pm+1...pn_1p,,_,, =p< 0.p1p2p3...pm_17pm+1...pn_1 Z .
Again, a neighborhood of p that contains no element of E.

.. pis not a limit point of E, contrary to our assumption.

. Ifpisalimit pointof E, thenp € E. .. Eisclosed. .. Eiscompact.

Is E perfect? Yes.

Proof:

Let p € E where the decimal expansion of p is 0.p1p2p3...pn....
Letr>0.Then 3 n such that 3/10" < r. Let p' = 0.p1p2p3...pnbn+1 ... Where
bni1=4if ppe1=7,and by+1 =7 if pne1 = 4. Thenp' € Ni(p),p' €EEand p' # p.
. pisalimit point of E. .. Every point of E is a limit point of E.

.. Since E is also closed, a shown above, then E is perfect.
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(18) Is there a nonempty perfect set in R! which contains no rational number?
Yes.

Proof:

Consider the set E constructed in the following manner.

First take a closed interval in R with irrational endpoints call it 4 = [ q, l;].

Since Q is countable we can let F = {q1,q2,..,qn,...} where F is a list of all the rationals

between & and b.

Let A1 = A\ (a1, b1) where & <ai<q1<b1 < b forai, b1 € Q,

Define An as follows:

If g» was already removed (i.e. contained in an interval previously deleted), let A, = Ap-1.
If g» was not already removed, let A, = An-1\(an, bn) Where a < an < qn < bn < b,
an, bn € Q¢, gn — an < mini<i<n ={|qn = bi|}, and qn = bn < mini<i<n ={|qn - ail}.

Let E = Nudn. By construction E contains no rational number.

Since each A, is closed then E'is closed.

To show E contains all its limit points, let p € E and let € > 0.

Then 3 g; € Q such that p < g; < p+&. Then 3 (a;, b)) such that q; € (a, bi).

Since p € E it must be the case that p <a; < q..

Since p<a;<qi<p +¢,then pisalimit pointof E. ... Eis perfect.
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6. Solve exercises 22 and 23 from page 45.

(22) A metric space is called separable if it contains a countable dense subset.
Show that R” is separable. Hint: Consider the set of points which have only rational
coordinates.

Proof:

Let n € N. We will show Q" is a countable dense subset of R”,

Clearly Q" C R~

We know Q is countable, and by Theorem 2.13 we have that Q" is countable as Q" is
a finite cross product of QQ by itself n times.

To show Q" is dense in R?, we let p € R” such that p & Q~.
We will show p is a limit point of Q~.
Lete > 0. Then foreveryi=1,2,..,n,3q € Qsuchthat0<p;-qi< s/w/;.

n 2
Thus|p-ql=+ (p,-4) <¢ - q=(q1 Gz -, 4:) EQ" and q € Ne(p).

.. Qnris dense in R?, hence, R” is separable.

(23) A collection {Va} of open subsets of X is said to be a base for X if the following is
true: For every x € X and every open set G C X such that x € G, we havexE Vo C G
for some a.. In other words, every open set in X is the union of a subcollection of {Va}.

Prove that every separable metric space has a countable base.
Hint: Take all neighborhoods with rational radius and center in some countable dense subset of X.

Proof:

Let (X, d) be a separable metric space.

Then 3 Y, a countable, dense subset of X.

Let {Va} ={Ny(y) |y €E Y and q € Q*}.

We will show {Va} is a countable base for X.

Letx € X. Let G be an open subset of X such that x € G.

Then 3 r > 0 such that N(x) C G, as G is open.

As Yis dense in X, then every point of X is a limit point of Y or a point of Y or both.
Thus N 2)r(x) N Y # J, hence dy € Ny jzp(x) N Y.

Recall that for any metric d, d: X x X — R*U{0}, so then V x, y € X, d(x, y) € R*U{0}.
We know Q* is dense in R*U{0}, hence 3 q € Q* such that d(x,y) < q < (1/2)r.
Letz€ Ny(y). Thend(x, z) <d(x,y) +d(z,y) < (1/2)r+q< (1/2)r+ (1/2)r=r.

Thus x € Ny¢(y) C N-(x) CG.

Hence {Vu} is a base for X.

To show {Vu} is countable, note that

@:{Va} — Q x Y defined by @(Ny(y)) = (g,y) is a bijection.

Since Q x Y is a finite product of countable sets, then Q x Y, hence {Vu} is countable.
.. Every separable metric space has a countable base.
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5. Solve exercises 27 and 28 from page 45.

(27) Define a point p in a metric space X to be a condensation point of a set E C X if
every neighborhood of p contains uncountably many points of E.
Suppose E C R, E is uncountable, and let P be the set of all condensation points of E.

Prove that P is perfect and that at most countably many points of E are not in P. In
other words, show that Pc N E is at most countable.

Hint: Let {Vn} be a countable base of R, let W be the union of those V, for which E NV, is at most
countable, and show that P = W,

Proof:

Let E C R” such that E is uncountable, and let P be the set of all condensation points of E.
To show Pis closed, letx& P'and let r > 0. Then 3y € N(x)* N P.

Since y € P, then Nr_4(x,,)(y) is uncountable, henceN;_4(x, )(y) C Nr(x) = N:(x) is
uncountable. Thusx &€ P. .. Pis closed.

To show every point of P is a limit point of P, let p € P and suppose p & P".

Then 3 r > 0 such that N.(p) N P = {p}.

We will show that N-(p) N E is the countable union of countable sets, hence p & P,
contrary to our assumption.

Lety € N/(p)* N E. Thus,y & P.

Let {Vn} be a countable base for R” (we know {Vx} exists by #22, 23 above).

So then 3 n such thaty € V,, C (N(p)* N E), since N-(p)* N E is open.

Notice that V,, N P = &, hence V, is at most countable.

And because y was chosen arbitrarily, then (N;(p)* N E) C U: V ,a countable

-1 n’
union of countable sets. Thus N,(p) N E is countable, and we have our contradiction.
.. Every point of P is a limit point of P, hence P is perfect.

To show that at most countably many points of E are not in P, let

W =U{Vp, € {Va} | V. N E is at most countable}.

We will show We =P,

Let x € P, then V r > 0, N-(x) contains uncountably many points of E.

Thus V n;, x € V,, € W, thus x &€ W, hence x € We.

Lety € We. Letr>0. Then (N-(y) NE)Z Vi ¥V ni. Thus, N(y) N E contains
uncountably many points. Since r was chosen arbitrarily, theny € P. ... P =W«
Since W is a countable union of countable sets, then W is at most countable.



HW 7, Practice Problems, Week #7, Assigned Friday, 10/15/10

(28) Prove that every closed set in a separable metric space is the union of a
(possibly empty) perfect set and a set which is at most countable. (Corollary: Every
countable closed set in R” has isolated points.) Hint: Use Exercise 27.

Proof:

Let (X, d) be a separable metric space, and let E C X be closed.

If E is at most countable, then E = E'U & which is the union of a perfect set and a set
which is at most countable. Assume E is uncountable.

Let P be the set of all condensation points of E.

Since X is separable, then, by Exercise #27, P is perfect and P¢ N E is at most
countable. Since P is closed, then PCE. Also PN E = E'\ Pis at most countable.

. E=PU (E\ P), which is a union of a perfect set and a set which is at most
countable.

7. Let SCR. Prove that the set of isolated points of S is at most countable.

Proof:
Let E C S such that E is a set of isolated points.
If E is finite, then E is countable. Assume E is infinite.
Since E is a set of isolated points then for each x € E, 3 ry > 0 such that Ny, (x) N E = {x}.
Let tx = (1/4) rx. We will show {N,(x)}«.k are disjoint.
Letx EE. Lety € Ni(x). Let z € E such thatd(x, z) = r«.
Then 3 r, > 0 such that N.(z) N E={z}. Letr=max {ry, rs}.
Thus (1/4)r; = t: < tx=(1/4)rx
Then r<d(x,z) <d(x,y) +d(y,z) < (1/4)rx+d(y, z) < (1/4)r + d(y, z).
Thus, (3/4)r. < (3/4)r < d(y, z), hence y & N, (z2).
And we have that {N;(x)}x.k are disjoint.
Now, by the density property, 3 px € Q such that x < px < x + tx. Thus px € N,(x).
Define f: E — Q by f (x) = px.
To show fis well-defined and 1-1, we let x, y € E such that f (x) = f (y).
Thenwe have x=y < f(x)=f(y)
< Px=Dy
< Nio(x) NNy (y) # D
< N (x) = N, ().
Thus, fis 1-1.
So then card E < card Q.
.. E is countable.
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8. Let SC R such that every x € § has a neighborhood which intersects S in at most
countably many points. Show that S is at most countable.

Proof:

We will first construct a set of neighborhoods, D, each neighborhood containing a
countable number of points, that covers S. In order to show D, or a subset of D that
still covers S (call it D1 if we need it), is countable we will find a countable set, 4, for
which we can define a function f: A — D (or D1) which is onto. This will give us that
D (or D1) is countable, hence S will be a countable union of countable sets.

Letx€ES.

By hypothesis, 3 r> 0 such that A = N(x) N Sis at most countable.

Let D = {™] x € S}. This is an open cover of S.

By the density property,
1 g€ Qsuch thatx < gx<x + ryaand I rq, € Q such that d(x, gx) < rq, < r/4.

Let MV, = Ny, (g) NS. Thusx & Ny, C My, and N, is at most countable.
Let A = {%V,, | xE S}. Note that A is countable.

Here, we would like to define f: A — Dby f (N, ) = M,

however, the map is not a well-defined function as it is possible that we could have

Ny, and N, € A such that N, = N, but f (Mg, ) # £ (D, )-

This would occur in the event that 3y € S such that y € A, and M # W, (see diagram).
So then we must reduce D in order to prevent this occurrence.

If Ay € S such that y € A, and M # M, we can reduce D by eliminating A as the
remaining neighborhoods in D still cover S. Call this reduced cover Ds.

Now we can define f: A — D1 by f(Ny. ) = k.

This map is well-defined and clearly onto.

. D1 is a countable open cover of S and each A € D is countable.

Since S = UD1, then S is a countable union of countable elements, hence countable.

This diagram is a
genralization of the
technique used in this
problem to S C R2,
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9. Show that (0, 1) x (0, 1) ~ (0, 1).

Proof:

We will show there is an injective function f: (0, 1) x (0, 1) — (0, 1) and an injective
function g: (0, 1) — (0, 1) x (0, 1), and thus, by the Schroder-Bernstein Theorem,
card ((0, 1) x (0, 1) ) = card ((0, 1)).

Let x = 0.x1x2.., and y = 0.y1y2... be unique decimal expansions of x, y € (0, 1).
Define f: (0, 1) x (0, 1) — (0, 1) by f ((x,y)) = f ((0.x1x2..., 0.y1y2...)) = 0.x1y1X2)2... -

To show fis well-defined and 1-1, we let (a, b), (¢, d) € (0, 1) x (0, 1) such that

f((a, b) = f((c, ).
Then we have f((a, b) =f((c, d))

= 0.(11b1azb2... = O.Cld1C2d2...
= ai=c,bi=di,az2=cz, b2=d>, ...
= (a, b) =(c, d).

Thus fis well-defined and 1-1,

Define g: (0,1) — (0, 1) x (0, 1) by g(x) = (x, 0.5). g is clearly 1-1.
. card ((0,1) x (0,1) ) = card ((0, 1)), hence (0, 1) x (0, 1) ~ (0, 1).



