Content:

Theorem 2.43 Let *P* be a perfect set in  $\mathbb{R}^k$ . Then *P* is uncountable.

Definition 2.45 Separated sets, connected sets

Theorem 2.47  $E \subset \mathbb{R}$  is connected  $\Leftrightarrow \forall x, y \in E$ , where x < y and

 $\forall z \in \mathbb{R}$  such that x < z < y, if follows that  $z \in E$ .

**Theorem 2.43** Let *P* be a perfect set in  $\mathbb{R}^k$ . Then *P* is uncountable.

**Proof**:

Suppose  $P = \{x_1, x_2, x_3, ...\}$  (i.e. P is countable).

Since *P* is perfect, then every point of *P* is a limit point of *P*.

Let  $r_1 > 0$ . Start with  $V_1 = N_{r_1}(x_1)$ . Construct  $V_2$  as follows:

(i)  $\overline{V}_2 \subset V_1$ ; (ii)  $x_1 \notin \overline{V}_2$ ; (iii)  $P \cap V_2 \neq \emptyset$ .

In general, construct  $V_{n+1}$  so that

(i)  $\overline{V}_{n+1} \subset V_n$ ; (ii)  $x_n \notin \overline{V}_{n+1}$ ; (iii)  $P \cap V_{n+1} \neq \emptyset$ .

Define  $K_n = P \cap \overline{V}_n$ . Then  $K_{n+1} \subset K_n$ .

Since each  $\overline{V}_n$  is closed and bounded, then each is compact.

Thus  $\bigcap_{n\in\mathbb{N}}K_n\neq\emptyset$ , contrary to  $x_n\notin\overline{V}_{n+1}$ .

**Note** *P* is not necessarily bounded.  $[0, +\infty)$  is perfect, but not bounded.

**Definition** 2.45 In a metric space *X*, 2 subsets *A* and *B* are separated if  $A \cap \overline{B} = \emptyset$ 

and  $\overline{A} \cap B = \emptyset$ .

**Examples** A = [0, 1) and B = (1, 2) are separated as  $[0, 1] \cap (1, 2) = [0, 1) \cap [1, 2] = \emptyset$ .

A = [0, 1] and B = (1, 2) are not separated as  $[0, 1] \cap [1, 2] \neq \emptyset$ .

**Definition**  $E \subset X$  is called connected if it cannot be written as  $E = A \cup B$  where

*A*, *B* are separated and  $A \neq \emptyset$  and  $B \neq \emptyset$ .

**Properties**  $E \subset X$  is connected  $\Leftrightarrow$  it cannot be written as  $E = A \cup B$  where  $A, B \neq \emptyset$ 

 $A \cap B = \emptyset$  and both A and B are open.

**Proof**:

 $\Rightarrow$ : Suppose  $E = A \cup B$ , if  $A \cap \overline{B} = \emptyset$  and  $\overline{A} \cap B = \emptyset$ .

Then  $A \cap B \subset A \cap \overline{B} = \emptyset$ , and we have

 $A = E \cap (X \setminus \overline{B})$  and  $B = E \cap (X \setminus \overline{A})$ , both open sets.

 $\Leftarrow$ : Suppose  $E = (A \cup B)$ , A,  $B \neq \emptyset$ ,  $A \cap B = \emptyset$ , and A and B are open.

To show  $A \cap \overline{B} = \emptyset$ , let  $x \in A$  and note that  $\exists r > 0$  such that  $N_r(x) \subset A$ .

Since  $B \subset \overline{B} \subset X \setminus A$ , then  $x \notin \overline{B}$ .  $\therefore A \cap \overline{B} = \emptyset$ .

Similarly  $\overline{A} \cap B = \emptyset$ .

**Note** *E* is pathwise connected if  $\forall x, y \in E, x \neq y, \exists$  a curve

inside *E* connecting *x* and *y*. (i.e there is a continuous

function  $\gamma:\mathbb{R}\to E$  st  $\gamma(0)=x, \gamma(1)=y$ .

## **Example**

In 
$$\mathbb{R}^2$$
 let  $E = \{(x, \sin(1/x)) | 0 \le x \le \pi/2\} \cup \{[0, y] | -1 \le y \le 1\}$ 

Then *E* is connected but not pathwise connected.



## **Theorem**

**2.47**  $E \subseteq \mathbb{R}$  is connected  $\Leftrightarrow \forall x, y \in E$ , where x < y and  $\forall z \in \mathbb{R}$  such that x < z < y, if follows that  $z \in E$ .

## **Proof**:

⇒: Suppose  $x, y \in E$  where x < y and  $z \in \mathbb{R}$  such that x < z < y, but  $z \notin E$ . Define  $A = E \cap (-\infty, z)$  and  $B = E \cap (z, \infty)$ . Then  $A \cap \overline{B} = \emptyset = \overline{A} \cap B$ ,  $A \cup B = E$ ,  $A \neq \emptyset$  (as  $x \in A$ ) and  $B \neq \emptyset$  (as  $y \in B$ ). So E is not connected.



 $\Leftarrow$ : Suppose that  $E = A \cup B$ , if  $A \cap \overline{B} = \emptyset$ ,  $\overline{A} \cap B = \emptyset$ ,  $A \neq \emptyset$ , and  $B \neq \emptyset$ . Choose  $x \in A$  and  $y \in B$  (assuming wlog that x < y).

We will show  $\exists z$  such that  $z \notin E$ .

Define  $z = \sup(A \cap [x, y])$ . We know z exists as A is bounded above by B and [x, y] is bounded above by y.

 $z = \sup(A \cap [x, y]) \Rightarrow z \in \overline{A \cap [x, y]} \subset \overline{A} \cap [x, y]$ . So  $z \in \overline{A}$ , hence  $z \notin B$ .

Thus z < y. Also,  $z = \sup(A \cap [x, y])$  and  $x \in A \Rightarrow x \le z$ .

To show x < z, notice that  $z \in \overline{A} \Rightarrow z \in A$  or  $z \notin A$ .

If  $z \notin A$ , then  $x \neq z$ , hence x < z. Thus  $z \notin E$ .

If  $z \in A$ , then  $z \notin \overline{B}$ , hence  $z \in \overline{B}^c$ , an open set.

Thus  $\exists r > 0$  such that  $N_r(z) \subset \overline{B}^c$ . By the density property

 $\exists z_1 \in \mathbb{R}$  such that  $z < z_1 < z + r < y$ .

And  $z = \sup(A \cap [x, y]) \Rightarrow z_1 \notin A \cap [x, y]$ ;  $z_1 \in [x, y] \Rightarrow z_1 \notin A$ , hence  $z \neq z_1$ . Thus  $x < z_1 < y$  and  $z_1 \notin E$ .

 $\therefore$  If *E* is connected, then  $\forall x, y \in E, x < z < y \Rightarrow z \in E$ .

