Real Analysis, Study Guide, Chapter 5

The Derivative of a Real Function

*Rudin 5.1 **Definition**: *Derivative/Differentiable* (Lecture Notes 2/9/11)

Let *f* be defined (and real valued) on [a, b]. For any $x \in [a, b]$ form the quotient

 $\phi(t) = \frac{f(t) - f(x)}{t - x} \quad (a < t < b, t \neq x), \text{ and define } f'(x) = \lim_{t \to x} \phi(t), \text{ provided this limit}$

exists.

We thus associate with the function f a function f ' whose domain is the set of points x at which $\lim \phi(t)$ exists; f ' is called the *derivative* of f.

If f' is defined at a point x, we say that f is *differentiable* at x. If f' is defined at every point of a set $E \subset [a, b]$, we say that f is differentiable on E.

*Rudin 5.2 **Theorem** (Lecture Notes 2/9/11) Let *f* be defined on [a, b]. If *f* is differentiable at a point $x \in [a, b]$, then *f* is continuous at *x*.

*****Rudin 5.3 **Theorem** (Lecture Notes 2/9/11)

Suppose *f* and *g* are defined on [a, b] and are differentiable at a point $x \in [a, b]$. Then f + g, fg, and f/g are differentiable on *x*, and

(a) (f+g)'(x) = f'(x) + g'(x);

(b)
$$(fg)'(x) = f'(x) g(x) + f(x)g'(x);$$

 $g(x) f'(x) - g'(x) f(x)$

(c)
$$(f/g)'(x) = \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)}, g(x) \neq 0.$$

*Rudin 5.4 Examples (Lecture Notes 2/9/11)

If f(x) = c, then f'(x) = 0. If f(x) = x, then f'(x) = 1. If $f(x) = x^n$, then $f'(x) = nx^{n-1}$. Every polynomial is differentiable. Every rational function is differentiable, except at the points where the denominator is 0.

Rudin 5.5 **Theorem (Lecture Notes 2/9/11) Suppose *f* is continuous on [a, b], f'(x) exists at some point $x \in [a, b], g$ is defined on an interval *I* which contais the range of *f*, and *g* is differentiable at the point f(x). If h(t) = g(f(t)) ($a \le t \le b$), then *h* is differentiable at *x*, and h'(x) = g'(f(x)) f'(x). Rudin 5.6 Examples

If
$$f(x) = \begin{cases} x \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$
, then $f'(x) = \sin \frac{1}{x} - \frac{1}{x} \cos \frac{1}{x} & (x \neq 0)$. And $f'(0)$ does not

exist.

If
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$
, then $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x} & (x \neq 0)$. And $f'(0) = 0$.

Thus, *f* is differentiable at all points *x*, but *f* ' is not a continuous function, since $\cos(1/x)$ does not tend to a limit as $x \rightarrow 0$.

Mean Value Theorems

*Rudin 5.7 **Definition**: *Local Maximum/Minima* (Lecture Notes 2/14/11) Let *f* be a real function defined on a metric space *X*. We say that *f* has a *local maximum* at a point $p \in X$ if there exists $\delta > 0$ such that $f(q) \le f(p)$ for all $q \in X$ with $d(p,q) < \delta$. *Local minima* are defined likewise.

Rudin 5.8 **Theorem (Lecture Notes 2/9/11) Let *f* be defined on [*a*, *b*]; if *f* has a local maximum at a point $x \in (a, b)$, and if f'(x) exists, then f'(x) = 0.

Rudin 5.9 **Theorem (Lecture Notes 2/14/11) If f and g are continuous real functions on [a, b] which are differentiable in (a, b), then there is a point $x \in (a, b)$ at which [f(b) - f(a)] g'(x) = [g(b) - g(a)]f'(x).

Rudin 5.10 **Theorem (Lecture Notes 2/14/11) If *f* is a real continuous function on [*a*, *b*] which is differentiable in (*a*, *b*), then there is a point $x \in (a, b)$ at which f(b) - f(a) = (b - a) f'(x).

*****Rudin 5.11 **Theorem** (Lecture Notes 2/14/11)

Suppose f is differentiable in (a, b).

- (a) If $f'(x) \ge 0$ for all $x \in (a, b)$, then f is monotonically increasing.
- (b) If f'(x) = 0 for all $x \in (a, b)$, then f is constant.
- (c) If $f'(x) \le 0$ for all $x \in (a, b)$, then f is monotonically decreasing.

The Continuity of Derivatives

**Rudin 5.12 Theorem (Lecture Notes 2/14/11)	
Suppose f is a real differentiable function on [a, b] and suppose f'(a) $< \lambda <$	<i>f</i> '(<i>b</i>).
Then there is a point $x \in (a, b)$ such that $f'(x) = \lambda$.	
A similar result holds if $f'(a) > f'(b)$.	

Rudin Corollary to Theorem 5.12

If f is differentiable on [a, b], then f' cannot have any simple discontinuities on [a, b].

L'Hospital's Rule

Rudin 5.13 **Theorem (Lecture Notes 2/16/11) Suppose *f* and *g* are real and differentiable in (a, b), and $g'(x) \neq 0$ for all $x \in (a, b)$, where $-\infty \le a < b \le +\infty$. Suppose $\frac{f'(x)}{g'(x)} \rightarrow A$ as $x \rightarrow a$. If $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a$, or if $g(x) \rightarrow +\infty$ as $x \rightarrow a$, then $\frac{f(x)}{g(x)} \rightarrow A$ as $x \rightarrow a$.

Derivatives of Higher Order

Rudin 5.14 **Definition**: *n*th *Derivative*

If *f* has a derivative *f* ' on an interval, and if *f* ' is itself differentiable, we denote the derivative of *f* ' by *f* " and call *f* " the 2nd derivative of *f*. Continuing in this manner, we obtain functions $f, f', f'', f^{(3)}, \ldots, f^{(n)}$, each of which is the derivative of the preceding one. $f^{(n)}$ is called the *n*th *derivative*, or the derivative or order *n*, of *f*.

Taylor's Theorem

Rudin 5.15 **Theorem** (Lecture Notes 2/16/11) Suppose *f* is a real function on [*a*, *b*], *n* is a positive integer, $f^{(n-1)}$ is continuous on [*a*, *b*], $f^{(n)}(t)$ exists for every $t \in (a, b)$. Let α, β be distinct points of [*a*, *b*], and define $P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha)^k$. Then there exists a point *x* between α and β such that $f(\beta) = P(\beta) + \frac{f^{(n)}(x)}{n!} (\beta - \alpha)^n$.

Differentiation of Vector-Valued Functions

Rudin 5.16 Remarks

If f_1 and f_2 are the real and imaginary parts of f, that is, if $f(t) = f_1(t) + i \cdot f_2(t)$ for $a \le t \le b$, where $f_1(t)$ and $f_2(t)$ are real, then we have $f'(x) = f_1'(x) + i \cdot f_2'(x)$; also, f is differentiable at x if and only if both f_1 and f_2 are differentiable at x. If $\mathbf{f} : [a, b] \to R^k$, then $\phi(t) = \frac{\mathbf{f}(t) - \mathbf{f}(x)}{t - x}$ ($a < t < b, t \ne x$), which is a point in \mathbb{R}^k for each t and $\mathbf{f}'(x) = \lim_{t \to x} \phi(t)$. \therefore $\mathbf{f}'(x)$ is that point of \mathbb{R}^k for which $\lim_{t \to x} \left| \frac{\mathbf{f}(t) - \mathbf{f}(x)}{t - x} - \mathbf{f}'(x) \right| = 0$. If f_1, \dots, f_k are the components of f, then $f' = (f_1', \dots, f_k')$, and f is differentiable at a

 $f_1 f_1, \dots, f_k$ are the components of f_1 then $f_1 = (f_1, \dots, f_k)$, and f is differentiable at point x if and only if each of the functions f_1, \dots, f_k is differentiable at x.

Rudin 5.17 Example

Define, for real $x, f(x) = e^{ix} = \cos x + i \sin x$. Then $f(2\pi) - f(0) = 1 - 1 = 0$, but $f'(x) = ie^{ix}$, so that |f'(x)| = 1 for all real x. Thus, Theorem 5.10 fails to hold.

Rudin 5.18 Example

On the segment (0, 1), define f(x) = x and $g(x) = x + x^2 e^{i/x^2}$. Then $\lim_{x \to 0} \frac{f(x)}{g(x)} = 1$, but

 $\lim_{x \to 0} \frac{f'(x)}{g'(x)} = 0.$: L'Hospital's Rule fails in this case.

Rudin 5.19 **Theorem**

Suppose **f** is a continuous mapping of [a, b] into R^k and **f** is differentiable in (a, b). Then there exists $x \in (a, b)$ such that $|\mathbf{f}(b) - \mathbf{f}(a)| \le (b - a)|\mathbf{f}'(x)|$.