Content:

Definition 4.1 Limit of a function: $f(x) \rightarrow q$ as $x \rightarrow p$

Theorem 4.2 $\lim_{x\to p} f(x) = q \Leftrightarrow \forall \{p_n\} \subset E \text{ such that } p_n \neq p, \forall n \in \mathbb{N} \text{ and } p_n \to p,$

it follows that $f(p_n) \rightarrow q$.

Final Exam Many got this wrong: $\sum_{n=1}^{\infty} \sin \frac{1}{n}$. As $n \to \infty$, $\frac{1}{n} \to 0$.

Discussion No one got this one right: $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$. Use the ratio test.

$$\frac{\frac{n!}{n^n}}{\frac{(n+1)!}{(n+1)^{n+1}}} = \frac{(n+1)^n}{n^n} = \left(1 + \frac{1}{n}\right)^n \to e.$$

To prepare for the comprehensive exam, check a standard calculus text for problems on sequences and series.

Chapter 4

Discussion Functions

• To study continuity of functions, we study limits.

To study limits, we need the function to reside in a metric space.

• To study differentiability of functions, we look at $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$.

To study the derivative, we need the function to reside in a vector space.

 $\lim_{h\to 0} \frac{f(x_0 + h \bullet v) - f(x_0)}{h}$ We look at what happens at the point x_0 when

the vector, v, is multiplied by a very small number.

Definition Limit of a Function

Let *X* and *Y* be metric spaces. Let $E \subset X$, $f: E \to Y$, p is limit point of E. Then $f(x) \to q$ as $x \to p$ or $\lim_{x \to a} f(x) = q \Leftrightarrow$

 $\forall \ \epsilon > 0, \exists \ \delta = \delta_{(\epsilon, p)} > 0 \text{ such that } d(f(x), q) < \epsilon \ \forall \ x \in E \text{ where } 0 < d(x, p) < \delta.$

Example

Let
$$E = (0, \infty)$$
 and let $Y = \mathbb{R}$. Define $f: E \to Y$ by $f(x) = \frac{\sin \sqrt{x}}{\sqrt{x}}$.

Let p = 0. Then p is a limit point of E even though $p \notin E$.

And $\lim_{x\to p} \frac{\sin\sqrt{x}}{\sqrt{x}} = 1$. So for $\varepsilon > 0$, $(1 - \varepsilon, 1 + \varepsilon)$ is the ε ball around q = 1, and $(0, \infty) \cap (-\delta, \delta) = (0, \delta)$ is the δ ball around p = 0.

Example

Define
$$f: \mathbb{R} \to \mathbb{R}$$
 by $f(x) = \begin{cases} \frac{\sin x}{x} : x \neq 0 \\ 5 : x = 0 \end{cases}$.

Here
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
, even though $f(x) = 5$.

Example

Prove
$$\lim_{x \to 3} x^2 = 9$$
. Choose an arbitrary $\varepsilon > 0$.

Solve $|x^2 - 9| < \varepsilon$ to find δ .

$$-\varepsilon < x^2 - 9 < \varepsilon$$

$$-\varepsilon + 9 < x^2 < \varepsilon + 9$$

$$\sqrt{9-\varepsilon} < x < \sqrt{9+\varepsilon}$$

We want $x - 3 < \delta$ to establish a ball around 3.

So
$$\sqrt{9-\varepsilon} - 3 < x - 3 < \sqrt{9+\varepsilon} - 3$$
.

If
$$\delta = \sqrt{9 + \varepsilon} - 3$$
, then $-\delta = 3 - \sqrt{9 + \varepsilon}$.

We can choose $\delta = \min\{\sqrt{9 + \varepsilon} - 3, 3 - \sqrt{9 - \varepsilon}\}$.

Then $|x - 3| < \delta$

$$\Rightarrow |x-3| < 3 - \sqrt{9-\varepsilon}$$
 and $|x-3| < \sqrt{9+\varepsilon} - 3$

$$\Rightarrow \sqrt{9-\varepsilon} - 3 < x - 3 < \sqrt{9+\varepsilon} - 3$$

$$\Rightarrow \sqrt{9-\varepsilon} < x < \sqrt{9+\varepsilon}$$

$$\Rightarrow -\varepsilon + 9 < \chi^2 < \varepsilon + 9$$

$$\Rightarrow -\varepsilon < x^2 - 9 < \varepsilon$$

$$\Rightarrow |x^2 - 9| < \varepsilon$$
.

A 2nd method:

$$|x^2-9|<\varepsilon \Rightarrow |x-3||x+3|<\varepsilon \Rightarrow |x-3|<\frac{\varepsilon}{|x+3|}.$$

We want *x* close to 3, so we only need to make sure $x + 3 \neq 0$ so that we can divide both sides by |x + 3|.

If
$$|x-3| < 2$$
, then $-2 < x-3 < 2$, and $4 < x+3 < 8$.

So then
$$\frac{\varepsilon}{8} < \frac{\varepsilon}{|x+3|}$$
. Choose $\delta = \min{\{\frac{\varepsilon}{8}, 2\}}$, then $|x-3| < \delta$

$$\Rightarrow |x-3| < \frac{\varepsilon}{8} \Rightarrow |x^2-9| = |x-3||x+3| < \frac{\varepsilon}{8}|x+3| < \frac{\varepsilon}{8} \bullet 8 = \varepsilon.$$

Theorem

4.2
$$\lim_{x\to p} f(x) = q \Leftrightarrow \forall \{p_n\} \subset E \text{ such that } p_n \neq p, \forall n \in \mathbb{N} \text{ and } p_n \to p,$$
 it follows that $f(p_n) \to q$.

Proof:

$$\Rightarrow$$
: Suppose $\lim_{x \to p} f(x) = q$. Then

$$\forall \ \epsilon > 0, \exists \ \delta = \delta_{(\epsilon, p)} > 0 \text{ such that } d(f(x), q) < \epsilon \ \forall \ x \in E \text{ where } 0 < d(x, p) < \delta.$$
 Let $\{p_n\} \subset E \text{ such that } p_n \neq p, \ \forall \ n \in \mathbb{N} \text{ and } p_n \rightarrow p.$ Then

$$\forall \delta > 0$$
, $\exists N_{\delta} \in \mathbb{N}$ such that $d(p_n, p) < \delta \forall n \geq N_{\delta}$.

Then put these two things together. Start with ϵ > 0.

Then choose δ according to the definition of limit of a function.

Choose $N_{\varepsilon} = N_{\delta(\varepsilon,p)}$ according to the definition of limit of a sequence.

So
$$\forall \epsilon > 0$$
, $\exists N_{\epsilon} \in \mathbb{N}$ such that $d(f(p_n), q) < \epsilon \forall n > N_{\epsilon}$.

⇐: Will do on Wednesday.