Definition 7.22 Equicontinuous functions

Theorem 7.24 If *K* is a compact metric space, $f_n \in \mathcal{C}(K) \ \forall \ n \in \mathbb{N}$, and $f_n \rightrightarrows f$ on *K*,

then $\{f_n\}$ is equicontinuous on K.

Theorem 7.23 If *E* is countable and $\{f_n\}$ is pointwise bounded on *E*, then

 $\exists \{f_{n_k}\} \ni \{f_{n_k}\} \text{ converges } \forall x \in E.$

Theorem 7.25 If *K* is compact, $f_n \in \mathcal{C}(K) \forall n \in \mathbb{N}$, $\{f_n\}$ is pointwise bounded on *K*,

and $\{f_n\}$ is equicontinuous on K, then (a) $\{f_n\}$ is uniformly bounded on K,

(b) $\{f_n\}$ contains a uniformly convergent subsequence.

Definition

7.22 Let $\mathscr{F} \subset \{f : E \to \mathbb{C}\}$. We say \mathscr{F} is equicontinuous if

 $\forall \ \epsilon > 0, \exists \ \delta > 0 \ni |x - y| < \delta \text{ and } x, y \in E \Rightarrow |f(x) - f(y)| \ \forall \ f \in \mathcal{F}$

Theorem

7.24 If *K* is a compact metric space, $f_n \in \mathcal{C}(K) \ \forall \ n \in \mathbb{N}$, and $f_n \rightrightarrows f$ on K, then $\{f_n\}$ is equicontinuous on K.

Proof:

 $f_n \rightrightarrows f \Rightarrow f$ is continuous by Theorem 7.12.

And compactness of *K* gives us that *f* is uniformly continuous.

Let $\varepsilon > 0$. Then $f_n \rightrightarrows f \Rightarrow \exists N_{\varepsilon} \in \mathbb{N} \ni \forall n > N_{\varepsilon} |f_n(x) - f(x)| < \varepsilon/3 \forall n \in \mathbb{N}$.

By uniform continuity of $f, \exists \delta^* > 0 \ni d(x, y) < \delta^*$ and $x, y \in K \Rightarrow |f(x) - f(y)| < \varepsilon/3$.

Let $n > N_{\varepsilon}$ and let $x, y \in K \ni d(x, y) < \delta^*$.

Then $|f_n(x) - f_n(y)| \le |f_n(x) - f(x)| + |f(x) - f(y)| + |f(y) - f_n(y)| < \varepsilon$.

By uniform continuity of each f_n ,

 $\exists \delta_1, ..., \delta_{N_{\epsilon}} > 0 \ni d(x, y) < \delta_i \text{ and } x, y \in K \Rightarrow |f_i(x) - f_i(y)| \le \varepsilon/3 \ \forall i \in \{1, 2, ..., N_{\epsilon}\}.$

Let $\delta = \min\{\delta_1, ..., \delta_{N_s}, \delta^*\}$. Let $n > N_s$.

Then, $|f_n(x) - f_n(y)| \le |f_n(x) - f(x)| + |f(x) - f(y)| + |f(y) - f_n(y)| < \varepsilon \forall n \in \mathbb{N}$.

Hence $\{f_n\}$ is equicontinuous on K.

Theorem

7.23 If *E* is countable and $\{f_n\}$ is pointwise bounded on *E*, then $\exists \{f_{n_k}\} \ni \{f_{n_k}\} \text{ converges } \forall x \in E$.

Proof:

Since *E* is countable, then we can let $E = \{x_1, x_2, ..., x_n\}$.

For x_1 , $\{f_n(x_1)\}$ is bounded, so $\exists \{f_{1k}(x_1)\} \subset \{f_n(x_1)\}$ that converges.

For x_2 , $\{f_{1k}(x_1)\}$ is bounded, so $\exists \{f_{2m}(x_2)\} \subset \{f_{1k}(x_1)\}$ that converges.

Note that f_{11} , f_{12} , f_{13} , ... converge only for x_1 ;

 f_{21} , f_{22} , f_{23} , ... converge only for x_1 and x_2 ; and, in general,

 f_{n1} , f_{n2} , f_{n3} , ... converge only for x_1 , x_2 , ..., x_n .

Select $f_{n1} = f_{11}$, $f_{n2} = f_{22}$, $f_{n3} = f_{33}$, ... Then $\{f_{n_k}\}$ is a subsequence that converges at each $x \in E$.

Theorem

7.25 If *K* is compact, $f_n \in \mathcal{C}(K) \ \forall \ n \in \mathbb{N}$, and $\{f_n\}$ is pointwise bounded on *K*, and $\{f_n\}$ is equicontinuous on *K*, then

- (a) $\{f_n\}$ is uniformly bounded on K,
- **(b)** $\{f_n\}$ contains a uniformly convergent subsequence.

Proof:

(a) Let $\varepsilon > 0$. Then equicontinuity of $\{f_n\} \Rightarrow \exists \ \delta > 0 \ni d(x,y) < \delta \ \text{and} \ x,y \in K \Rightarrow |f_n(x) - f_n(y)| < \varepsilon \ \forall \ n \in \mathbb{N}$. By compactness of K, $\exists \ p_1, p_2, ..., p_r \in K \ni K \subset \bigcup_{i=1}^r \{B(p_i,\delta)\}$. Pointwise boundedness of $\{f_n\} \Rightarrow \exists \ M_i > 0 \ni |f_n(p_i)| \le M_i \ \forall \ n \in \mathbb{N}, \ \forall \ i \in \{1, ..., r\}$. Let $M = \max\{M_1, ..., M_r\}$. Let $x \in K$. Then $\exists \ i_0 \ni x \in B(p_{i_0}, \delta)$. Thus, $|f_n(x)| \le |f_n(x) - f_n(p_{i_0})| + |f_n(p_{i_0})| \le \varepsilon + M \ \forall \ x \in K, \ \forall \ n \in \mathbb{N}$.

(b) Let *E* be a countable dense subset of *K*.

Equicontinuity of $\{f_n\} \Rightarrow$

 $\exists \ \delta > 0 \Rightarrow d(x,y) < \delta \ \text{and} \ x,y \in K \Rightarrow |f_n(x) - f_n(y)| < \varepsilon/3 \ \forall \ n \in \mathbb{N}.$

By Theorem 7.23, and pointwise boundedness by part (a),

 $\exists \{f_{n_k}\} \subset \{f_n\} \ni \{f_{n_k}\} \text{ converges } \forall x \in E.$

So $\exists N_{\varepsilon} \in \mathbb{N} \ni \forall n_k, n_m \ge N_{\varepsilon}$, we have $|f_{n_{\varepsilon}}(x) - f_{n_m}(x)| \le \varepsilon/3 \ \forall x \in E$.

By compactness of K, $\exists x_1, x_2, ..., x_r \in E \ni K \subset \bigcup_{i=1}^r \{B(x_i, \delta)\}.$

Let $x \in K$. Then $\exists i \ni x \in B(x_i, \delta)$. Thus, for $n_k, n_m \ge N_{\varepsilon}$.

 $|f_{n_k}(x) - f_{n_m}(x)| \le |f_{n_k}(x) - f_{n_k}(x_i)| + |f_{n_k}(x_i) - f_{n_m}(x_i)| + |f_{n_m}(x_i) - f_{n_m}(x)|$ $\le \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon.$

 \therefore $\{f_{n_k}\}$ is uniformly convergent.