Section 1.4, page 31 # 1, 2, 3, 4, 5

1. If a sequence (x_n) in a metric space X is convergent and has limit x, show that every subsequence (x_{nk}) of (x_n) is convergent and has the same limit x.

Proof:

Let $\varepsilon > 0$. Let $(x_n) \subset X$ such that $x_n \to x$. Then $\exists N \in \mathbb{N} \ni d(x_n, x) < \varepsilon \ \forall n \ge N$. Let $(x_{nk}) \subset (x_n)$. $\exists k_0 \in \mathbb{N} \ni n_{k_0} > N \ \forall k \ge k_0$. $\therefore d(x_{nk}, x) < \varepsilon \ \forall k \ge k_0$. Hence $x_{nk} \to x$.

2. If (x_n) is Cauchy and has a convergent subsequence, say, $x_{n_k} \rightarrow x$, show that (x_n) is convergent with the limit x.

Proof:

Let $\varepsilon > 0$. Let $(x_n) \subset X$ such that (x_n) is Cauchy.

Then $\exists N \in \mathbb{N} \ni \forall m, n \geq N, d(x_m, x_n) < \varepsilon/2$.

Suppose $\exists (x_{nk}) \subset (x_n) \ni x_{nk} \to x$. Then $\exists k_0 \in \mathbb{N} \ni n_{k_0} > N \forall k \ge k_0 \text{ and } d(x_{nk}, x) < \varepsilon/2$. So then $\forall k \ge k_0 d(x_n, x) \le d(x_n, x_{nk}) + d(x_{nk}, x) < \varepsilon$, hence $x_n \to x$.

3. Show that $x_n \to x \Leftrightarrow$ for every neighborhood V of x there is an integer n_0 such that $x_n \in V$ for all $n > n_0$.

Proof:

 \Rightarrow : Assume $x_n \to x$ and let V be a neighborhood of x. Then $\exists \ \varepsilon > 0 \ni B(x, \ \varepsilon) \subset V$. And $x_n \to x \Rightarrow \exists \ n_0 \in \mathbb{N} \ni d(x_n, x) < \varepsilon \ \forall \ n \ge n_0$. Thus $x_n \in B(x, \ \varepsilon) \subset V \ \forall \ n \ge n_0$. \Leftarrow : Let $\varepsilon > 0$. Then, by assumption, $\exists \ n_0 \in \mathbb{N} \ni \forall \ n > n_0, \ x_n \in B(x, \ \varepsilon)$. Thus, $\forall \ n > n_0, \ d(x_n, x) < \varepsilon$, hence $x_n \to x$.

4. Show that a Cauchy sequence is bounded.

Proof:

Let $(x_n) \subset X$ such that (x_n) is Cauchy.

Then $\exists N \in \mathbb{N} \ni \forall m, n \geq N, d(x_m, x_n) < 1$. Thus, $\forall n \geq N, x_n \in B(x_N, 1)$. Let $r = \max(d(x_1, x_N), d(x_2, x_N), ..., d(x_{N-1}, x_N), 1)$. Then $\forall n \in \mathbb{N} \ x_n \in B(x_N, r)$.

5. Is boundedness of a sequence in a metric space sufficient for the sequence to be Cauchy? No. Convergent? No. Proof:

Let
$$X = \mathbb{Z}$$
 and let $x_n = \begin{cases} 0 : n \text{ is even} \\ 1 : n \text{ is odd} \end{cases}$.

This sequence is bounded by 1, but $\forall n \in \mathbb{N}$, $d(x_n, x_{n+1}) = 1$, hence is not Cauchy. Additionally, the sequence is not convergent as it contains 2 subsequences that converge to different limits. This contradicts the contrapositive of exercise #1.