Section 2.6, page 90 # 1, 2, 3, 7, 8, 12, 13, 14, 15

1. Show that the operators in 2.6-2 (I_x : $X \to X$ defined by $I_X x = x \forall x \in X$),

2.6-3 (0: $X \rightarrow Y$ defined by $0x = 0 \forall x \in X$), and

2.6-4 ($X = \{all \text{ polynomials on } [a, b]\}$, Tx(t) = x'(t) for every $x \in X$) are linear.

Proof:

Let
$$\alpha$$
, $\beta \in K$, and $x, y \in X$. Then $I_X(\alpha x + \beta y) = \alpha x + \beta y = \alpha I_X x + \beta I_X y$.
 $0(\alpha x + \beta y) = 0 = \alpha 0(x) + \beta 0(y)$.
 $T(\alpha x + \beta y) = \alpha x' + \beta y' = \alpha Tx + \beta Ty$.

∴ Each operator is linear.

2. Show that the operators T_1 , ..., T_4 from \mathbb{R}^2 into \mathbb{R}^2 defined by

$$(\xi_1, \xi_2) \mapsto (\xi_1, 0)$$

$$(\xi_1, \xi_2) \mapsto (0, \xi_2)$$

$$(\xi_1, \xi_2) \mapsto (\xi_2, \xi_1)$$

$$(\xi_1, \xi_2) \mapsto (\gamma \xi_1, \gamma \xi_2)$$

respectively, are linear, and interpret these operators geometrically.

Proof:

Let
$$\alpha$$
, $\beta \in K$, and (ξ_1, ξ_2) , $(\eta_1, \eta_2) \in \mathbb{R}^2$. Then $T_1(\alpha(\xi_1, \xi_2) + \beta(\eta_1, \eta_2)) = T_1((\alpha\xi_1 + \beta\eta_1, \alpha\xi_2 + \beta\eta_2))$

=
$$(\alpha \xi_1 + \beta \eta_1, 0)$$

$$= \alpha(\xi_1, 0) + \beta(\eta_1, 0) = \alpha T_1(\xi_1, \xi_2) + \beta T_1(\eta_1, \eta_2)$$

Hence, T_1 is linear. T_1 sends elements from \mathbb{R}^2 to the horizontal axis.

$$T_2(\alpha(\xi_1,\xi_2)+\beta(\eta_1,\eta_2))=T_2((\alpha\xi_1+\beta\eta_1,\alpha\xi_2+\beta\eta_2))$$

$$= (0, \alpha \xi_2 + \beta \eta_2)$$

$$= \alpha(0, \xi_2) + \beta(0, \eta_2) = \alpha T_2(\xi_1, \xi_2) + \beta T_2(\eta_1, \eta_2)$$

Hence, T_2 is linear. T_2 sends elements from \mathbb{R}^2 to the vertical axis.

$$T_3(\alpha(\xi_1, \xi_2) + \beta(\eta_1, \eta_2)) = T_3((\alpha\xi_1 + \beta\eta_1, \alpha\xi_2 + \beta\eta_2))$$

$$= (\alpha \xi_2 + \beta \eta_2, \alpha \xi_1 + \beta \eta_1)$$

$$= \alpha(\xi_2, \xi_1) + \beta(\eta_2, \eta_1) = \alpha T_3(\xi_1, \xi_2) + \beta T_3(\eta_1, \eta_2)$$

Hence, T_3 is linear. T_3 mirrors elements from \mathbb{R}^2 across the diagonal line through the origin.

$$T_4(\alpha(\xi_1, \xi_2) + \beta(\eta_1, \eta_2)) = T_4((\alpha\xi_1 + \beta\eta_1, \alpha\xi_2 + \beta\eta_2))$$

=
$$(\alpha \gamma \xi_1 + \beta \gamma \eta_1, \alpha \gamma \xi_2 + \beta \gamma \eta_2)$$

$$= \alpha(\gamma \xi_1, \gamma \xi_2) + \beta(\gamma \eta_1, \gamma \eta_2) = \alpha T_4(\xi_1, \xi_2) + \beta T_4(\eta_1, \eta_2)$$

Hence, T_4 is linear. T_4 sends elements of \mathbb{R}_2 distance of γ along the diagonal through each point.

3. What are the domain, range and null space of T_1 , T_2 , T_3 in Prob. 2?

$$\mathcal{D}(T_1) = \mathbb{R}^2$$
, $\mathcal{R}(T_1) = \{(x, 0) | x \in \mathbb{R}\}$, $\mathcal{N}(T_1) = \{(0, x) | x \in \mathbb{R}\}$,

$$\mathscr{D}(T_2) = \mathbb{R}^2$$
, $\mathscr{R}(T_2) = \{(0, y) | y \in \mathbb{R}\}$, $\mathscr{N}(T_2) = \{(x, 0) | x \in \mathbb{R}\}$,

$$\mathcal{D}(T_3) = \mathbb{R}^2$$
, $\mathcal{R}(T_3) = \mathbb{R}^2$, $\mathcal{N}(T_3) = \{(0,0)\}$.

7. Let X be any vector space and S: $X \to X$ and T: $X \to X$ any operators. S and T are said to commute if ST = TS, that is, (ST)x = (TS)x for all $x \in X$. Do T_1 and T_3 in Prob. 2 commute?

Yes.

Proof:

$$\forall (x,y) \in \mathbb{R}^2$$
, $T_1 T_3 ((x,y)) = T_1(y,x) = (0,x)$; and $T_3 T_1 ((x,y)) = T_1(x,0) = (0,x)$.

8. Write the operators in Prob. 2 using 2×2 matrices.

$$T_{1}((x,y)) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}.$$

$$T_{2}((x,y)) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ y \end{pmatrix}.$$

$$T_{3}((x,y)) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}.$$

$$T_{4}((x,y)) = \begin{pmatrix} \gamma & 0 \\ 0 & \gamma \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \gamma x \\ \gamma y \end{pmatrix}.$$

12. Does the inverse of T in 2.6-4($X = \{all polynomials on [a, b]\}$, Tx(t) = x'(t) for every $x \in X$) exist?

No.

Proof:

Let α , $\beta \in K \ni \alpha \neq \beta$. Then $T(\alpha) = T(\beta) = 0$. Thus, $\mathcal{P}(T) \neq \{0\}$, hence T^{-1} does not exist.

13. Let T: $\mathcal{D}(T) \to Y$ be a linear operator whose inverse exists. If $\{x_1, ..., x_n\}$ is a linearly independent set in $\mathcal{D}(T)$, show that the set $S = \{Tx_1, ..., Tx_n\}$ is linearly independent.

Proof:

Assume *S* is linearly dependent. Then

 $\Theta_Y = \alpha_1 T(x_1) + \alpha_2 T(x_2) + \cdots + \alpha_n T(x_n)$ for some $\alpha_1, \alpha_2, ..., \alpha_n \in K$, and not all $\alpha_i = 0$. So then $T^{-1}(\Theta_Y) = \Theta_X = T^{-1}(\alpha_1 T(x_1) + \alpha_2 T(x_2) + \cdots + \alpha_n T(x_n)) = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n$. This contradicts that $\{x_1, ..., x_n\}$ is linearly independent.

 \therefore S is linearly independent also.

14. Let T: $X \to Y$ be a linear operator and dim $X = \dim Y = n < \infty$. Show that $\mathcal{R}(T) = Y \Leftrightarrow T^{-1}$ exists.

Proof:

 \Rightarrow : Let $B = \{x_1, ..., x_n\}$ be a basis for X.

Suppose T⁻¹ does not exist. Then $\mathcal{N}(T) \neq \{\Theta_X\}$. Thus, $\exists x \neq \Theta_X \in X \ni T(x) = \Theta_Y$.

And $x = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n$ for some $\alpha_1, \alpha_2, ..., \alpha_n \in K$ where not all $\alpha_i = 0$.

So then $T(x) = \Theta_Y = \alpha_1 T(x_1) + \alpha_2 T(x_2) + \cdots + \alpha_n T(x_n)$.

Thus $\{Tx_1, Tx_2, ..., Tx_n\}$ is a linearly dependent set.

Consider $y \in \mathcal{R}(T)$.

Then $\exists x \in X \ni T(x) = y$ and $x = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n$ for some $\alpha_1, \alpha_2, ..., \alpha_n \in K$.

 $T(x) = \alpha_1 T(x_1) + \alpha_2 T(x_2) + \cdots + \alpha_n T(x_n)$, hence span $\{Tx_1, Tx_2, ..., Tx_n\} = \mathcal{R}(T)$.

Since $\{Tx_1, Tx_2, ..., Tx_n\}$ spans $\mathscr{R}(T)$ but is linearly independent, then dim $\mathscr{R}(T) \le n - 1$. This gives us that $\mathscr{R}(T) \ne Y$.

 \Leftarrow : By contrapositive, suppose $\mathcal{R}(T) \neq Y$. Then $\exists y \in Y \ni \forall x \in X$, $T(x) \neq y$.

 \therefore T⁻¹ does not exist.

15. Consider the vector space X of all real-valued functions which are defined on \mathbb{R} and have derivatives of all orders everywhere on \mathbb{R} . Define $T: X \to X$ by y(t) = Tx(t) = x'(t). Show that $\mathcal{R}(T)$ is all of X but T^{-1} does not exist. Compare with Prob. 14 and comment.

Proof:

To show T is onto, let $y \in X$.

Then y = f(t) for some $f \in \{f : \mathbb{R} \to \mathbb{R} | f^{(n)} \text{ exists for all } n \in \mathbb{N}\}.$

And $T(\int f(t)dt) = y$. \therefore T is onto.

To show T is not 1-1, we note that $T(\alpha_0) = 0$ and $T(\alpha_1) = 0$ where $\alpha_0 \neq \alpha_1$. In comparison with #14, we see that this exemplifies a case in which a linear operator is onto, but not 1-1. In #14, we used the fact that both the domain and range were of the same finite dimension. In #15, we have a linear operator from a domain to a range both of infinite dimension.